欢迎来到天天文库
浏览记录
ID:39335108
大小:1.11 MB
页数:31页
时间:2019-07-01
《孙炳达版《自动控制原理》第2章线性连续系统的数学模型-5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、自动控制原理第二章线性连续系统的数学模型2.5信号流程图2.5信号流程图式中,x1为输入信号(变量);x2为输出信号(变量);a12为两信号之间的传输(增益)。即输出变量等于输入变量乘上传输值。若从因果关系上来看,x1为“因”,x2为“果”。这种(信号传递/函数运算/变量因果)关系,可用下图表示。一、信号流程图的概念与常用术语信号流程图,是一种由节点和支路组成的信号传递网络,表示线性化代数方程组变量间关系的图示方法。例某一线性系统,它由下述方程式描述:x2=a12x1x1a12x22.5信号流程图节点:表示信号(变量),用小圆圈“O”表示,并在近旁标出所代表的变量。支路:连接两节点
2、的定向线段,用符号“”表示。典型的信号流程图如下所示。x1x2x3x4x5x6x7a6a5a1a2a3a4-b1-b2-b3-b42.5信号流程图节点可分为以下三种:(1)源节点:只有输出支路的节点,它代表系统的输入变量(控制信号),如图中x1。(2)汇节点:只有输入支路的节点,它代表系统的输出变量(被控制信号),如图中x7。(3)混合节点:既有输入支路,又有输出支路的节点,如图中x2、x3、x4、x5、x6。x1x2x3x4x5x6x7a6a5a1a2a3a4-b1-b2-b3-b4x1x7x2x3x4x5x62.5信号流程图支路具有两个特征:有向性限定了信号传递方向。支路方
3、向就是信号传递的方向,用箭头表示。有权性限定了输入与输出两个变量之间的关系。支路的权用它近旁标出的传输值(增益)表示。2.5信号流程图通路:从某一节点开始,沿着支路的箭头方向连续经过一些支路而终止在另一节点的路径,且每个节点只经过一次。通道增益为经过支路增益的乘积。前向通路:从源节点开始到汇节点结束的通路,如a1a2a3a4a5a6。闭通路(回路):通路的终点就是起点的开通道。如a3(-b1),a5(-b3),a2a3a4a5(-b4),(-b2)。x1x2x3x4x5x6x7a6a5a1a2a3a4-b1-b2-b3-b4x1x2x3x4x5x6x7a6a5a1a2a3a4x2x
4、3x4x5x6a5a2-b4x3x4a3-b1x5x6a5-b3x4-b22.5信号流程图回路(闭通路)分为三种:(1)不接触回路回路之间没有公共节点和支路,如a3(-b1)与a5(-b3)。(2)接触回路回路之间有公共节点和支路,如a3(-b1)与a2a3a4a5(-b4),a5(-b3)与a2a3a4a5(-b4)。(3)自回路只与一个节点相交的回路,如(-b2)。x1x2x3x4x5x6x7a6a5a1a2a3a4-b1-b2-b3-b4x2x3x4x5x6a5a2-b4x3x4a3-b1x5x6a5-b3x4-b22.5信号流程图信号流程图的基本性质1)信号流程图只能代表线
5、性代数方程组;2)节点表示系统的变量,表示所有流向该节点的信号之(代数)和;而从该节点流向各支路的信号,均用该节点变量表示;3)信号在支路上沿箭头单向传递,后一节点变量依赖于前一节点变量,即只有“前因后果”的因果关系;4)支路相当于乘法器,信号流经支路时,被乘以支路增益而变换为另一信号;5)对于给定的系统,信号流程图不唯一。2.5信号流程图例根据微分方程绘制下图的信号流图。二、信号流程图的绘制方法1、直接法:将系统微分方程作拉氏变换后,按所得代数方程作图(过程与绘制动态结构图类似)。2.5信号流程图(1)列出微分方程,并变换为s的代数方程。2.5信号流程图(2)根据s的代数方程绘制
6、信号流程图。2.5信号流程图(3)按照系统中变量的因果关系,从左向右顺序排列,画出信号流图。2.5信号流程图2、翻译法:由系统动态结构图变形得来。绘制原则:原信号线变为节点,传递函数变为支路增益。结构图:输入端比较点分支点信号线方框输出端信号流图:输入节点混合节点支路输出节点2.5信号流程图例画出下图所示系统的信号流图。解:根据翻译法,将系统结构图中的符号翻译成对应图形。R(s)C(s)G1(s)G2(s)H(s)﹣+E2(s)E1(s)R(s)E1(s)C(s)E2(s)G2(s)G1(s)H(s)-2.5信号流程图例画出下图所示系统的信号流图。1G(s)-H(s)2.5信号流程
7、图例画出下图所示系统的信号流图。1G(s)-H(s)112.5信号流程图例画出下图所示系统的信号流图。G2G1G3G4HRC123456G2G11G31-HG411234562.5信号流程图T——闭环传递函数;Δ——特征式;三、梅逊增益公式梅逊增益公式用于计算输入节点与输出节点间的总增益,它用下式表示:——为所有不同回路的增益之和;——每两个互不接触回路增益乘积之和;——每三个互不接触回路增益乘积之和;——每m个互不接触回路增益乘积之和;2.5信号流程图——第K条前向
此文档下载收益归作者所有