高中数学第二章数列2.4等比数列第2课时教案新人教a版必修52

高中数学第二章数列2.4等比数列第2课时教案新人教a版必修52

ID:39297347

大小:156.00 KB

页数:7页

时间:2019-06-29

高中数学第二章数列2.4等比数列第2课时教案新人教a版必修52_第1页
高中数学第二章数列2.4等比数列第2课时教案新人教a版必修52_第2页
高中数学第二章数列2.4等比数列第2课时教案新人教a版必修52_第3页
高中数学第二章数列2.4等比数列第2课时教案新人教a版必修52_第4页
高中数学第二章数列2.4等比数列第2课时教案新人教a版必修52_第5页
资源描述:

《高中数学第二章数列2.4等比数列第2课时教案新人教a版必修52》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.4等比数列(2)一、教学目标:知识与技能1.了解等比数列更多的性质;2.能将学过的知识和思想方法运用于对等比数列性质的进一步思考和有关等比数列的实际问题的解决中;3.能在生活实际的问题情境中,抽象出等比数列关系,并能用有关的知识解决相应的实际问题.过程与方法1.继续采用观察、思考、类比、归纳、探究、得出结论的方法进行教学;2.对生活实际中的问题采用合作交流的方法,发挥学生的主体作用,引导学生探究问题的解决方法,经历解决问题的全过程;3.当好学生学习的合作者的角色.情感态度与价值观1.通过对

2、等比数列更多性质的探究,培养学生的良好的思维品质和思维习惯,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力;2.通过生活实际中有关问题的分析和解决,培养学生认识社会、了解社会的意识,更多地知道数学的社会价值和应用价值.二、教学重点:1.探究等比数列更多的性质;2.解决生活实际中的等比数列的问题.教学难点;渗透重要的数学思想(类比思想、归纳思想、数形结合思想、算法思想、方程思想以及一般到特殊的思想方法等.).三、学情及导入分析:这节课师生将进一步探究等比数列的知识,以教材练习中

3、提供的问题作为基本材料,认识等比数列的一些基本性质及内在的联系,理解并掌握一些常见结论,进一步能用来解决一些实际问题.通过一些问题的探究与解决,渗透重要的数学思想方法.教学中以师生合作探究为主要形式,充分调动学生的学习积极性.教具准备多媒体课件、投影胶片、投影仪等7四、教学过程:教学环节教学内容师生活动设计意图复习旧知识,引入新知归纳抽象形成概念1.温故知新师教材中第59页练习第3题、第4题,请学生课外进行活动探究,现在请同学们把你们的探究结果展示一下.师对各组的汇报给予评价.师出示多媒体幻灯片一:第3题

4、、第4题详细解答:猜想:在数列{an}中每隔m(m是一个正整数)取出一项,组成一个新数列,这个数列是以a1为首项、qm为公比的等比数列.◇本题可以让学生认识到,等比数列中下标为等差数列的子数列也构成等比数列,可以让学生再探究几种由原等比数列构成的新等比数列的方法.第4题解答:(1)设{an}的公比是q,则a52=(a1q4)2=a12q8而a3·a7=a1q2·a1q6=a12q8,所以a52=a3·a7.同理,a52=a1·a9.(2)用上面的方法不难证明an2=an-1·an+1(n>1).由此

5、得出,an是an-1和an+1的等比中项,同理可证an2=an-k·an+k(n>k>0).an是an-k和an+k的等比中项(n>k>0).师学生回答;生由学习小组汇报探究结果.第3题解答:(1)将数列{an}的前k项去掉,剩余的数列为ak+1,ak+2,….令bi=ak+i,i=1,2,…,则数列ak+1,ak+2,…,可视为b1,b2,….因为(i≥1),所以,{bn}是等比数列,即ak+1,ak+2,…是等比数列.(2){an}中每隔10项取出一项组成的数列是a1,a11,a21,…,则(k≥1

6、).所以数列a1,a11,a21,…是以a1为首项,q10为公比的等比数列.由复习引入,通过数学知识的内部提出问题。7比较分析,深化认识和等差数列一样,等比数列中蕴涵着许多的性质,如果我们想知道的更多,就要对它作进一步的探究.合作探究师出示投影胶片1例题1 (教材P61B组第3题)就任一等差数列{an},计算a7+a10,a8+a9和a10+a40,a20+a30,你发现了什么一般规律,能把你发现的规律用一般化的推广吗?从等差数列和函数之间的联系的角度来分析这个问题.在等比数列中会有怎样的类似结论?师注意

7、题目中“就任一等差数列{an}”,你打算用一个什么样的等差数列来计算?师很好,这个数列最便于计算,那么发现了什么样的一般规律呢?师题目要我们“从等差数列与函数之间的联系的角度来分析这个问题”,如何做?师出示多媒体课件一:等差数列与函数之间的联系.师从等差数列与函数之间的联系的角度来分析这个问题:由等差数列{an}的图象,可以看出,根据等式的性质,有.生用等差数列1,2,3,…生在等差数列{an}中,若k+s=p+q(k,s,p,q∈N*),则ak+as=ap+aq.生思考、讨论、交流.生猜想对于等

8、比数列{an},类似的性质为:k+s=p+t(k,s,p,t∈N*),则ak·as=ap·at.生培养学生分析,抽象能力、感受数学概念形成过程及建模思想。7所以ak+as=ap+aq.师在等比数列中会有怎样的类似结论?师让学生给出上述猜想的证明.证明:设等比数列{an}公比为q,则有ak·as=a1qk-1·a1qs-1=a12·qk+s-2,a

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。