欢迎来到天天文库
浏览记录
ID:39223140
大小:1.40 MB
页数:26页
时间:2019-06-27
《Reynolds-Averaged Turbulence Modeling Using Type I and Type II Machine Learning Frameworks with Deep Learning》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、Reynolds-AveragedTurbulenceModelingUsingTypeIandTypeIIMachineLearningFrameworkswithDeepLearningChih-WeiChangandNamT.DinhDepartmentofNuclearEngineeringNorthCarolinaStateUniversity,RaleighNC27695-7909cchang11@ncsu.edu,ntdinh@ncsu.eduAbstractDeeplearning(DL)-basedReynoldsstresswithitscapabilityt
2、oleveragevaluesoflargedatacanbeusedtocloseReynolds-averagedNavier-Stoke(RANS)equations.TypeIandTypeIImachinelearning(ML)frameworksarestudiedtoinvestigatedataandflowfeaturerequirementswhiletrainingDL-basedReynoldsstress.Thepaperpresentsamethod,flowfeaturescoveragemapping(FFCM),toquantifythephy
3、sicscoverageofDL-basedclosuresthatcanbeusedtoexaminethesufficiencyoftrainingdatapointsaswellasinputflowfeaturesfordata-driventurbulencemodels.ThreecasestudiesareformulatedtodemonstratethepropertiesofTypeIandTypeIIML.ThefirstcaseindicatesthaterrorsofRANSequationswithDL-basedReynoldsstressbyTyp
4、eIMLareaccumulatedalongwiththesimulationtimewhentrainingdatadonotsufficientlycovertransientdetails.ThesecondcaseusesTypeIMLtoshowthatDLcanfigureouttimehistoryofflowtransientsfromdatasampledatvarioustimes.ThecasestudyalsoshowsthatthenecessaryandsufficientflowfeaturesofDL-basedclosuresarefirst-
5、orderspatialderivativesofvelocityfields.ThelastcasedemonstratesthelimitationofTypeIIMLforunsteadyflowsimulation.TypeIIMLrequiresinitialconditionstobesufficientlyclosetoreferencedata.ThenreferencedatacanbeusedtoimproveRANSsimulation.Keywords:data-driventurbulencemodeling,Reynoldsstress,deeplea
6、rning,TypeImachinelearningframework,TypeIImachinelearningframework1.IntroductionReynolds-averagedNavier-Stokes(RANS)equationsarewidelyusedinfluidengineeringsimulationandanalysisduetoitscomputationalefficiency.ReynoldsstressisessentialtocloseRANSequations.Lineareddyviscositymodels(LEVMs)areatt
7、ractivetorepresentReynoldsstressduetotheircomputationalefficiency.LEVMsincludeSpalart-Allmaras[1],k-ε[2],andk-ω[3]modelsthatrequireextensivelyevaluatedandcalibratedfordifferentflowcharacteristics.Consequently,performanceofdifferentmodelsislim
此文档下载收益归作者所有