Reynolds-Averaged Turbulence Modeling Using Type I and Type II Machine Learning Frameworks with Deep Learning

Reynolds-Averaged Turbulence Modeling Using Type I and Type II Machine Learning Frameworks with Deep Learning

ID:39223140

大小:1.40 MB

页数:26页

时间:2019-06-27

Reynolds-Averaged Turbulence Modeling Using Type I and Type II Machine Learning Frameworks with Deep Learning_第1页
Reynolds-Averaged Turbulence Modeling Using Type I and Type II Machine Learning Frameworks with Deep Learning_第2页
Reynolds-Averaged Turbulence Modeling Using Type I and Type II Machine Learning Frameworks with Deep Learning_第3页
Reynolds-Averaged Turbulence Modeling Using Type I and Type II Machine Learning Frameworks with Deep Learning_第4页
Reynolds-Averaged Turbulence Modeling Using Type I and Type II Machine Learning Frameworks with Deep Learning_第5页
资源描述:

《Reynolds-Averaged Turbulence Modeling Using Type I and Type II Machine Learning Frameworks with Deep Learning》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Reynolds-AveragedTurbulenceModelingUsingTypeIandTypeIIMachineLearningFrameworkswithDeepLearningChih-WeiChangandNamT.DinhDepartmentofNuclearEngineeringNorthCarolinaStateUniversity,RaleighNC27695-7909cchang11@ncsu.edu,ntdinh@ncsu.eduAbstractDeeplearning(DL)-basedReynoldsstresswithitscapabilityt

2、oleveragevaluesoflargedatacanbeusedtocloseReynolds-averagedNavier-Stoke(RANS)equations.TypeIandTypeIImachinelearning(ML)frameworksarestudiedtoinvestigatedataandflowfeaturerequirementswhiletrainingDL-basedReynoldsstress.Thepaperpresentsamethod,flowfeaturescoveragemapping(FFCM),toquantifythephy

3、sicscoverageofDL-basedclosuresthatcanbeusedtoexaminethesufficiencyoftrainingdatapointsaswellasinputflowfeaturesfordata-driventurbulencemodels.ThreecasestudiesareformulatedtodemonstratethepropertiesofTypeIandTypeIIML.ThefirstcaseindicatesthaterrorsofRANSequationswithDL-basedReynoldsstressbyTyp

4、eIMLareaccumulatedalongwiththesimulationtimewhentrainingdatadonotsufficientlycovertransientdetails.ThesecondcaseusesTypeIMLtoshowthatDLcanfigureouttimehistoryofflowtransientsfromdatasampledatvarioustimes.ThecasestudyalsoshowsthatthenecessaryandsufficientflowfeaturesofDL-basedclosuresarefirst-

5、orderspatialderivativesofvelocityfields.ThelastcasedemonstratesthelimitationofTypeIIMLforunsteadyflowsimulation.TypeIIMLrequiresinitialconditionstobesufficientlyclosetoreferencedata.ThenreferencedatacanbeusedtoimproveRANSsimulation.Keywords:data-driventurbulencemodeling,Reynoldsstress,deeplea

6、rning,TypeImachinelearningframework,TypeIImachinelearningframework1.IntroductionReynolds-averagedNavier-Stokes(RANS)equationsarewidelyusedinfluidengineeringsimulationandanalysisduetoitscomputationalefficiency.ReynoldsstressisessentialtocloseRANSequations.Lineareddyviscositymodels(LEVMs)areatt

7、ractivetorepresentReynoldsstressduetotheircomputationalefficiency.LEVMsincludeSpalart-Allmaras[1],k-ε[2],andk-ω[3]modelsthatrequireextensivelyevaluatedandcalibratedfordifferentflowcharacteristics.Consequently,performanceofdifferentmodelsislim

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。