machine learning that matters

machine learning that matters

ID:39716899

大小:233.21 KB

页数:6页

时间:2019-07-10

machine learning that matters_第1页
machine learning that matters_第2页
machine learning that matters_第3页
machine learning that matters_第4页
machine learning that matters_第5页
资源描述:

《machine learning that matters》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MachineLearningthatMattersKiriL.Wagstaffkiri.l.wagstaff@jpl.nasa.govJetPropulsionLaboratory,CaliforniaInstituteofTechnology,4800OakGroveDrive,Pasadena,CA91109USAAbstracttivelysolvedspamemaildetection(Zdziarski,2005)andmachinetranslation(Koehnetal.,2003),twoMuchofcurre

2、ntmachinelearning(ML)re-problemsofglobalimport.Andsoon.searchhaslostitsconnectiontoproblemsofimporttothelargerworldofscienceandso-Andyetwestillobserveaproliferationofpublishedciety.Fromthisperspective,thereexistglar-MLpapersthatevaluatenewalgorithmsonahandfulinglimit

3、ationsinthedatasetsweinvesti-ofisolatedbenchmarkdatasets.Their“realworld”gate,themetricsweemployforevaluation,experimentsmayoperateondatathatoriginatedinandthedegreetowhichresultsarecommu-therealworld,buttheresultsarerarelycommunicatednicatedbacktotheiroriginatingdom

4、ains.backtotheorigin.Quantitativeimprovementsinper-Whatchangesareneededtohowwecon-formancearerarelyaccompaniedbyanassessmentofductresearchtoincreasetheimpactthatMLwhetherthosegainsmattertotheworldoutsideofhas?WepresentsixImpactChallengestoex-machinelearningresearch.p

5、licitlyfocusthefield’senergyandattention,Thisphenomenonoccursbecausethereisnoandwediscussexistingobstaclesthatmustwidespreademphasis,inthetrainingofgraduatestu-beaddressed.Weaimtoinspireongoingdis-dentresearchersorinthereviewprocessforsubmittedcussionandfocusonMLthatm

6、atters.papers,onconnectingMLadvancesbacktothelargerworld.Eventherichassortmentofapplications-drivenMLresearchoftenfailstotakethefinalsteptotrans-1.Introductionlateresultsintoimpact.Atonetimeoranother,weallencounterafriend,Manymachinelearningproblemsarephrasedintermssp

7、ouse,parent,child,orconcernedcitizenwho,uponofanobjectivefunctiontobeoptimized.Itistimeforlearningthatweworkinmachinelearning,wondersustoaskaquestionoflargerscope:whatisthefield’s“What’sitgoodfor?”Thequestionmaybephrasedobjectivefunction?Doweseektomaximizeperfor-mores

8、ubtlyorelegantly,butnomatteritsform,itgetsmanceonisolateddatasets?Orcanwecharacterizeatthemotivationalunderpinningsoftheworkthatwep

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。