欢迎来到天天文库
浏览记录
ID:39167348
大小:41.03 KB
页数:5页
时间:2019-06-26
《小学数学与初中数学的区别与对策》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、小学数学与初中数学的区别与对策和小学数学相比,初中数学内容多、抽象、理论性强、难度大,因而有不少学生进入初中之后不适应,这就使相当多的学生学习数学感到困难,从而产生畏惧感。其实只要方法得当,完全能够良好过度。 对即将升入初中的你 首先恭喜你即将步入中学的大门,曾经只是一颗小树苗的你,进入中学后,就已经是一棵小树了,你会跟随着学校的步伐、社会的步伐、世界的步伐,慢慢长大、慢慢成长,做一棵参天大树。 1.调整心态,笑迎挑战 以前有的孩子有过这样的疑惑:多少人没有学过数学,不都活得好好的吗?那些烦人的公式、定理对现实
2、生活有啥意义啊,买东西时你知道100块钱咋给它破开找钱就得了呗! 可现在随着学习知识越来越深你会发现,几乎所有的自然科学都要以数学做强大的基础。物理中的力、热、光、电各大课题,计算机中的编程开发、软件应用,都要用数学,这些都显而易见;很多工科方面的都要用到大量的统计学的原理,生物、化学的研究与应用都要用到大量数学规律,就连绘画、建筑、美学等都是很需要数学的!所以数学千万不可小觑。等你真正发现数学的魅力时,你定会爱上它的。 2.学习方法是关键 你在小学的许多良好的学习方法和习惯应该继续保持哦。如上课坐姿端正,答题踊
3、跃,声音响亮,积极举手发言等,这些都是初中学生健康、全面发展所不可缺少的,对于数学课发言同样很重要。一个思维活跃、肯于动脑、发言踊跃的学生,学起数学来定会得心应手,游刃有余。 另外,想要出类拔萃的你一定要自觉地培养以下良好的学习习惯。 ①着重预习,学会自学 预习是学生自学的开始,在小学阶段往往不那么重视,你会逐步尝到自觉寻求知识来解决问题的甜头,从而激发学习的兴趣,慢慢地就能自觉预习,主动提出难以理解的问题,为学习新知识打下基础。 ②专心听讲,乐于思考 课堂45分钟最为关键哦!你要养成一边听讲、一边看书、一边
4、思考的习惯,使自己的多种感官都参与活动,无论是课前、课内还是课后,都要字斟句酌地研究课本,多问几个为什么,从而加深对定义、定理、法则的理解。 ③规范作业,强化训练 就书面练习来看,小学生往往重结果而轻过程,进入初中后,部分学生的作业不能独立思考,解题格式不规范,步骤混乱等不良现象。为此,你要从思想上认识规范作业的重要性,对那些不规范的现象及时予以纠正,养成自觉订正的好习惯。 ④及时小结,温故知新 学习的过程一般可分为“学习”、“保持”、“再现”三个阶段,而保持和再现又是其中比较重要的阶段。如何去巩固运用所学的知
5、识呢?一是要进行复习小结,及时再现当天或本单元所学的知识,培养他们运用联想、再现、追忆等方法同遗忘作斗争;二是积累资料进行整理复习的能力,如将平时作业、单元测试中技巧性强的、易错的题目及时收集成册——错题本,便于复习时参考,从而提高解题能力,巩固所学的知识。 3.一个必备的能力 计算能力是一项基本的数学能力,是一个人今后生活、学习所必须的基本素质之一。但是目前孩子们在计算中反映出来的情况令人担忧。孩子的计算能力不高,经常导致计算错误,从而直接影响了其它学科如物理、化学的学习。有些家长对计算能力的训练不是太重视,一直
6、都以为是孩子粗心大意才会算错,其实计算题的训练能帮助孩子提高他的思维敏感力、思维的灵活性,同时在心理上更会提高孩子对学习数学的信心。因此,家长对训练提高孩子的计算能力应该有必要的重视初中数学与小学数学如何衔接许多初中的家长向我询问,为什么小学数学成绩很好,可一上初中孩子就感到非常不适应初中数学了,下面是老师自己对“初”--“小”衔接教学中的一点体会,谨以此文献给升入初中的学生!初一《代数》教材,涉及数、式、方程和不等式,这些内容与小学数学中的算术数、简易方程、算术应用题等知识有关,但初一数学内容比小学内容更为丰富,抽象
7、,复杂,在教学方法上也不尽相同;而小学学生的数学学习习惯和学习方法与中学生应有的学习习惯也不尽一致,因此,在教学过程中必须注意中小学数学的衔接. 一、内容上的衔接 1.算术数与有理数 小学数学是在算术数中研究问题的,而中学数学一开始就有有理数,因此,从算术数过渡到有理数是一大转折,为此,须抓住以下几点: (1)讲清楚具有相反意义的量,是引入负数的关键. 这里,可以通过多举些学生熟悉的实际例子,使学生了解引入负数的必要性及负数的意义.例如,如何区别零上度和零下度这两个具有相反意义的量呢? 又如,珠穆朗玛峰的海
8、拔高度和吐鲁番盆地的海拔高度是具有相反意义的量等等,在教学中可以多举一些例子,让学生了解为了区别具有相反意义的量必须引入一种新的数——负数. (2)逐步加深对有理数的认识 首先,让学生清楚地认识到有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,对有理数的概念的理解,运算的掌握就简便多了.
此文档下载收益归作者所有