2008+Tensor Rank and the Ill-Posedness of the Best Low-Rank文献

2008+Tensor Rank and the Ill-Posedness of the Best Low-Rank文献

ID:39151062

大小:439.34 KB

页数:44页

时间:2019-06-25

2008+Tensor Rank and the Ill-Posedness of the Best Low-Rank文献_第1页
2008+Tensor Rank and the Ill-Posedness of the Best Low-Rank文献_第2页
2008+Tensor Rank and the Ill-Posedness of the Best Low-Rank文献_第3页
2008+Tensor Rank and the Ill-Posedness of the Best Low-Rank文献_第4页
2008+Tensor Rank and the Ill-Posedness of the Best Low-Rank文献_第5页
资源描述:

《2008+Tensor Rank and the Ill-Posedness of the Best Low-Rank文献》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、TENSORRANKANDTHEILL-POSEDNESSOFTHEBESTLOW-RANKAPPROXIMATIONPROBLEMVINDESILVA∗ANDLEK-HENGLIM†Abstract.Therehasbeencontinuedinterestinseekingatheoremdescribingoptimallow-rankapproximationstotensorsoforder3orhigher,thatparallelstheEckart–Youngtheoremformatrices.Inth

2、ispaper,wearguethatthenaiveapproachtothisproblemisdoomedtofailurebecause,unlikematrices,tensorsoforder3orhighercanfailtohavebestrank-rapproximations.Thephenomenonismuchmorewidespreadthanonemightsuspect:examplesofthisfailurecanbeconstructedoverawiderangeofdimensio

3、ns,ordersandranks,regardlessofthechoiceofnorm(orevenBr`egmandivergence).Moreover,weshowthatinmanyinstancesthesecounterexampleshavepositivevolume:theycannotberegardedasisolatedphenomena.Inoneextremecase,weexhibitatensorspaceinwhichnorank-3tensorhasanoptimalrank-2a

4、pproximation.Thenotableexceptionstothismisbehaviorarerank-1tensorsandorder-2tensors(i.e.matrices).Inamorepositivespirit,weproposeanaturalwayofovercomingtheill-posednessofthelow-rankapproximationproblem,byusingweaksolutionswhentruesolutionsdonotexist.Forthistowork

5、,itisnecessarytocharacterizethesetofweaksolutions,andwedothisinthecaseofrank2,order3(inarbitrarydimensions).Inourworkweemphasizetheimportanceofcloselystudyingconcretelow-dimensionalexamplesasafirststeptowardsmoregeneralresults.Tothisend,wepresentadetailedanalysiso

6、fequivalenceclassesof2×2×2tensors,andwedevelopmethodsforextendingresultsupwardstohigherordersanddimensions.Finally,welinkourworktoexistingstudiesoftensorsfromanalgebraicgeometricpointofview.Therankofatensorcanintheorybegivenasemialgebraicdescription;inotherwords,

7、canbedeterminedbyasystemofpolynomialinequalities.Westudysomeofthesepolynomialsincasesofinteresttous;inparticularwemakeextensiveuseofthehyperdeterminant∆onR2×2×2.Keywords.numericalmultilinearalgebra,tensors,multidimensionalarrays,multiwayarrays,tensorrank,tensorde

8、compositions,lowranktensorapproximations,hyperdeterminants,Eckart–Youngtheorem,principalcomponentanalysis,parafac,candecomp,Br`egmandivergenceoftensorsAMSsubje

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。