资源描述:
《Compressed sensing, sparse approximation, and low-rank matrix estimation》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、Compressedsensing,sparseapproximation,andlow-rankmatrixestimationThesisbyYanivPlanInPartialFulllmentoftheRequirementsfortheDegreeofDoctorofPhilosophyCaliforniaInstituteofTechnologyPasadena,California2011(DefendedFebruary1,2011)ii©2011YanivPlanAllRightsReservediiiDedicatedtomywife,JasminivAbstr
2、actTheimportanceofsparsesignalstructureshasbeenrecognizedinaplethoraofapplicationsrangingfrommedicalimagingtogroupdiseasetestingtoradartechnology.Ithasbeenshowninpracticethatvarioussignalsofinterestmaybe(approximately)sparselymodeled,andthatsparsemodelingisoftenbenecial,orevenindispensabletosi
3、gnalrecovery.Alongsideanincreaseinapplications,arichtheoryofsparseandcompressiblesignalrecoveryhasrecentlybeendevelopedunderthenamescompressedsensing(CS)andsparseapproximation(SA).Thisrevolutionaryresearchhasdemon-stratedthatmanysignalscanberecoveredfromseverelyundersampledmeasurementsbytakinga
4、dvantageoftheirinherentlow-dimensionalstructure.Morerecently,anoshootofCSandSAhasbeenafocusofresearchonotherlow-dimensionalsignalstructuressuchasmatricesoflowrank.Low-rankmatrixrecovery(LRMR)isdemonstratingarapidlygrowingarrayofimportantappli-cationssuchasquantumstatetomography,triangulationfr
5、omincompletedistancemeasurements,recommendersystems(e.g.,theNet
ixproblem),andsystemidenticationandcontrol.Inthisdissertation,weexamineCS,SA,andLRMRfromatheoreticalperspective.Weconsideravarietyofdierentmeasurementandsignalmodels,bothrandomanddeterministic,andmainlyasktwoquestions.Howmanymeas
6、urementsarenecessary?Howlargeistherecoveryerror?Wegivetheoreticallowerboundsforbothofthesequestions,includingoracleandminimaxlowerboundsfortheerror.However,themainemphasisofthethesisistodemonstratetheecacyofconvexoptimization
7、inparticular`1andnuclear-normminimizationbasedprograms
8、inCS,SA,andLR
9、MR.Wederiveupperboundsforthenumberofmeasurementsrequiredandtheerrorderivedbyconvexoptimization,whichinmanycasesmatchthelowerboundsuptoconstantorlogarithmicfactors.Themajorityoftheseresultsdonotrequiretherestrictedisometryproperty(