欢迎来到天天文库
浏览记录
ID:39131840
大小:716.14 KB
页数:33页
时间:2019-06-25
《关于半环的结构和同余》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、则s/p=雪为S./p。=&的强分配格的充要条侔为P§o.第四章得出广义分式半环及其上的广义分式半模的一些性质,给出广义分式半环的泛性刻划,主要结论如下:定理4.5若R,A是含幺交换半环,设g:R—}A为半环同态,s,T为R的乘法闭子集,s£T,且使9(s)为A的可逆元子集,9(T)为A的可消元子集,则存在唯一的同态h:筛1冗—+A使h,=9.关键词:半环,半环的强分配格,半环的强分配格对应的分配格同余,相等化子,同余可消元分类号:0152.73OnStructuresofSemiringsAndCong
2、ruencesonSemiringsLiuHongxingDepartmentofMathematics,ShandongNormalUniversityJinan,Shandong,250014,P.R.ChinaABSTRACTInthisdissertation,wegiveacharacterizationofringcongruencesonasemir—ing;besides,wediscusstherelationofasublatticeofthedirectproductofthelat
3、ticesofcongruencesonafamilyofsemiringsandasublatticeofthelatticeofcongruencesonthestrongdistributivelatticeofthosesemirings;finally,wediscussgeneralizedfractionalsemiringsandgeneralizedfractionalsemimodulesonthose.Themainresultsaregiveninfollow,InChapter1
4、,wegivetheintroductionandpreliminaries.InChapter2,wemainlygiveacharacterizationofringcongruencesonasemiringandgetthecharacterizationofringcongruencesonadditionalcommuta-tivesemirings.Theorem2.7LetRbeasemiring,TbeadensereflexiveideaofR,thenPTisaringcongrue
5、nceonRandT≤kerpT;Conversely,ifPisaringcongruenceonR,thenkerpisafulldensereflexiveunitaryideaofR,andP=PkerD.InChapter3,wecharacterizethecongruencesonastrongdistributivelatticeofsemiringsbythecongruencesonthosesemiringsandprovethatasub-latticeofthedirectpro
6、ductofthelatticesofcongruencesonthosesemiringsisisomorphictoasublatticeofthelatticeofcongruencesonthestrongdistributivelatticeofsemirings.Finally,wegetanecessaryandsufficientconditionforaquo-tientsemiringofastrongdistributivelatticeofsemiringstobeastrongd
7、istributivelatticeofquotientsemirings.Themainresultsaregiveninfollow.Lemma3.2LetS=,Pabeacongruenceon&恤∈D),and{风Io∈D)satisfyconditionVa,b∈&,(a,b)∈Pa—}V卢≥口,卢∈D,(o‰,口,bcpQ,卢)∈p卢,(A)4arelationP0nSisdefinedby(a,b)∈P,a∈&,6∈函{==争j7≥a+卢,(o。p。.,,6妒口.1)∈p
8、1.ThenPiscongruenceonS.Theorem3.13LetS=,andeachlpn,口beanisomorphism.Definemap妒:c台—÷£c,where£c={p∈£slpsatisfiesconditiong),{p。)卜_P,Then妒islatticeisomorphism.Theorem3.22LetS=,盯bethecorrespondingdis
此文档下载收益归作者所有