欢迎来到天天文库
浏览记录
ID:39106903
大小:139.50 KB
页数:4页
时间:2019-06-25
《数学华东师大版七年级下册第10章《10.1.2 轴对称的再认识》教学设计》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、10.1轴对称2.轴对称的再认识教学目标【知识与技能】1.通过动手实验,使学生知道线段和角是轴对称图形。2.掌握线段的垂直平分线的定义和性质,并学会应用线段垂直平分线性质解决相关问题。3.掌握角的平分线的定义和性质,并学会用角的平分线性质解决相关问题。【过程与方法】通过动手操作探索轴对称的性质,运用轴对称性质解决实际问题.【情感态度】培养独立观察思考的习惯,感受数学几何图形的美,体验设计轴对称图形带来的快乐.【教学重点】线段的垂直平分线的定义和性质,角的平分线性质【教学难点】线段的垂直平分线的定义和性,角的平分线性质教学过程一、回顾轴对称图形和轴对称(请学生对上节课
2、的知识进行回答)二、思考探究,获取新知探究1线段的垂直平分线请学生在半透明纸上画出线段AB和它的中点O,再过O点画与AB垂直的直线CD,沿直线CD将纸对折,观察线段OA和线段OB是否重合.在上述试验中,显然线段OA和线段OB互相重合,因此,线段AB是轴对称图形.垂直并且平分一条线段的直线称为这条线段的垂直平分线.如上图中直线CD是线段AB的垂直平分线.线段的垂直平分线是直线.探究2线段请同学思考:线段的对称轴是什么?它是唯一的吗?线段的对称轴有两条,一条是它的垂直平分线,另一条是这条线段所在的直线.探究3角小实验:每位同学准备一张半透明的白纸,在纸上画一个角(∠AO
3、B),然后对折这个角,使角的两条边完全重合,然后用直尺画出折痕OM.请同学思考:从上面的实验中你能发现什么?角是轴对称图形,对称轴是它的角平分线所在的直线.如图所示的直线OM就是它的对称轴.探究4画对称轴有时我们感觉一个图形是轴对称的,那么如何来验证呢?这就需要我们去找到它的对称轴,看看沿着对称轴翻折以后两部分是否重合.(1)试一试:如图,方格子内的两图形都是成轴对称的,请画出它们的对称轴.在上图中,由于图形在方格子内,我们可以凭直觉很准确地画出两个图形的对称轴,你能想想是什么原因吗?因为在方格子中我们比较容易看清楚图形的位置,也就比较容易确定图形的中间位置.(2)
4、如果没有方格子,而又不能折叠,你还能比较容易地画出图形的对称轴吗?请同学试试看,如下图的对称轴我们应该如何去画呢?请同学们画出图形的对称轴,相互交流你是怎样画的?(3)如图点A和点A1关于某直线对称,画出这个图形的对称轴.如图,连结点A和点A1,画出线段AA1的垂直平分线MN,则直线MN就是所是点A和点A1的对称轴.做完以后,我们可以总结一下对称轴的画法.【归纳结论】1.找出轴对称图形的任意一组对应点,连结对称点.2.画出对称点所在连线段的垂直平分线.则这条垂直平分线就是它的对称轴.通过以上的操作,我们可以有这样的结论:如果一个图形关于某一条直线对称,那么连结对称点
5、的线段的垂直平分线就是该图形的对称轴.【教学说明】让学生在准备好的图案上动手操作,通过观察测量,对折等解决以上问题.解决问题的方法和结论学生会说出好多种,对这些结论进行整理,就是轴对称的性质.三、运用新知,深化理解1.下列说法错误的是()A.等边三角形是轴对称图形B.轴对称图形的对应边相等,对应角相等C.成轴对称的两条线段必在对称轴一侧D.成轴对称的两个图形对应点的连线被对称轴垂直平分2.设A、B两点关于直线MN轴对称,则垂直平分.3.下列图形中,哪些是图形对称轴,哪些不是图形的对称轴?【教学说明】对本节知识进行巩固练习.【答案】1.C2.直线MN线段AB3.解:②
6、、④、⑥是图形的对称轴,①、③、⑤不是图形的对称轴.4.解:有两条对称轴,作图略.5.解:作图略6.解:作图略7.解:第1个图形是轴对称图形,它有2条对称轴,其它两个图形不是轴对称图形,作图略.四、师生互动,课堂小结先小组内交流收获和感想,然后以小组为单位派代表进行总结.教师加以补充.课后作业完成练习册中本课时练习.教学反思本节课应采用小组学习模式,在小组讨论之前,应该留给学生充分独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,
7、使小组合作学习更具实效性.根据不同学生的不同特点应注意适当增减内容以保证课堂教学的顺利完成.
此文档下载收益归作者所有