重积分论文 《高等数学》——重积分

重积分论文 《高等数学》——重积分

ID:39105907

大小:370.21 KB

页数:11页

时间:2019-06-24

重积分论文 《高等数学》——重积分_第1页
重积分论文 《高等数学》——重积分_第2页
重积分论文 《高等数学》——重积分_第3页
重积分论文 《高等数学》——重积分_第4页
重积分论文 《高等数学》——重积分_第5页
资源描述:

《重积分论文 《高等数学》——重积分》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、《高等数学》——重积分摘要:高等数学讨论的重积分主要包括二重积分和三重积分两部分,引起二重积分概念的过程是测量曲顶柱体体积的过程的反映,三重积分概念是作为二重积分概念的推广而引出的,但事实上三重积分也是某些具体现实过程的反映。重积分在各种知识领域中的应用非常广阔,我们将在理论力学,材料力学,水力学及其她一些工程学科中碰到它们。重积分主要用来解决实际问题,在本文中,首先我总结一下学习中遇到的重积分的应用,比如求空间立体的体积,空间物体的质量及其在几何和物理方面的应用,并借以实例加以说明。其次,谈谈我个人对学习重积分的一些建议和想法。关键词:重积分;曲面面积;重心;转动惯量;引力;应用.在高等

2、数学中,重积分是多元函数积分学的内容,在一元函数积分学中我们知道定积分是某种确定形式的和的极限。这种和的概念推广到定义在区域、曲线及曲面上多元函数的情形,便得到重积分、曲线积分及曲面积分的概念。高等数学讨论的重积分主要包括二重积分和三重积分两部分,引起二重积分概念的过程是测量曲顶柱体体积的过程的反映,三重积分概念是作为二重积分概念的推广而引出的,但事实上三重积分也是某些具体现实过程的反映。在本章中将介绍重积分的概念、计算法以及它们的一些应用。重积分在各种知识领域中的应用非常广阔,我们将在理论力学,材料力学,水力学及其她一些工程学科中碰到它们。文章中我分为两个部分来谈重积分,第一部分主要归纳

3、了重积分的应用,对于重积分的学习,要求主要掌握重积分的计算和应用,会用重积分的思想解决实际问题,然而计算又涵盖在具体应用中。因此学习重积分要从它的应用着手。第二部分谈了谈自己对学习重积分的一些建议和想法。主要从学习重积分的思想和计算方法两方面来谈。I.重积分的应用归纳如下:1.1曲面的面积设曲面的方程为在面上的投影为,函数在上具有连续偏导数,则曲面的面积为:若曲面的方程为在面上的投影为,则曲面的面积为:若曲面的方程为在面上的投影为,则曲面的面积为:例1:计算双曲抛物面被柱面所截出的面积。解:曲面在面上投影为,则即有:从而被柱面所截出的面积如上所示。例2:求半径为的球的表面积.解:取上半球面

4、方程为,则它在面上的投影区域.又由得因为这函数在闭区域上无界,我们不能直接应用曲面面积公式,所以先取区域为积分区域,算出相应于的球面面积后,令取的极限就得半球面的面积.利用极坐标,得于是这就是半个球面的面积,因此整个球面的面积为1.2质量1.2.1平面薄片的质量若平面薄片占有平面闭区域,面密度为,则它的质量为,其中称为质量元素.1.2.2物体的质量若物体占有空间闭区域,体密度为,则它的质量为例3:由螺线,与直线,围成一平面薄片,它的面密度为,求它的质量。解:如图所示,1.3质心1.3.1平面薄片的质心若平面若平面薄片占有平面比区域,面密度为,则它的质心坐标为:,其中为平面薄片的质量.1.3

5、.2物体的质心若物体占有空间闭区域,体密度为,则它的质心坐标为:,其中为物体的质量.例4:求位于两球面,和之间的均匀物体的质心.解:由对称性可知,质心必须位于轴上,故由公式由面常数,不妨设,则,所以,从而质心坐标为。例5:求位于两圆和之间的均匀薄片的质心。解:如图所示:因为闭区域对称于轴轴,所以质心,必位于轴上,于是。再按公式计算,由于闭区域位于半径为1和半径为2的两圆之间,所以它的面积等于这两圆面积之差,即。再利用极坐标计算积分因此所以质心是。1.4转动惯量1.4.1平面薄片的转动惯量若平面薄片占有平面闭区域,面密度为,则它对轴,轴以及对原点的转动惯量分别为:1.4.2物体的转动惯量若物

6、体占有空间闭区域,体密度为,则它对轴,轴以及对原点的转动惯量分别为:例6:求半径为的均匀半圆薄片对其直径的转动惯量。解:建立坐标系如图所示:又半圈薄片的质量.例7:求均匀球体对于过球心的一条轴的转动惯量。解:取球心为原点,轴为轴,设球所占域为则1.5引力1.5.1平面薄片对质点的引力若平面若平面薄片占有平面比区域,面密度为,质量为的质点位于,设薄片对质点的引力为,则,其中,为引力常数.1.5.2物体对质点的引力若物体占有空间闭区域,体密度为,质量为的质点位于,设薄片对质点的引力为,则其中,为引力常数.例8:求一高,底面半径为的密度均匀的正圆锥对其顶点处的单位质点的引力。解:以圆锥的顶点为原

7、点,对称轴为轴建立直角坐标系,此时圆锥的方程为,设密度为,所求用微元法讨论,在圆锥任意一点处取微元,则此小块质量为,它对原点处单位质点引力为:,其中由对称性可知,因为,所以,从而所以,圆锥对位于顶点处的单为质点的引力为。例9:求半径为的均匀球对位于点的单位质量质点的引力.解:利用对称性知引力分量II.重积分小谈2.1积分学与微分学积分学与微分学是相对的统一。微分学从微观角度研究问题,而积分从宏观角度。客观世界的认知活动,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。