Using Wikipedia to Translate OOV Terms on MLIR英文资料

Using Wikipedia to Translate OOV Terms on MLIR英文资料

ID:39072236

大小:325.18 KB

页数:4页

时间:2019-06-24

Using Wikipedia to Translate OOV Terms on MLIR英文资料_第1页
Using Wikipedia to Translate OOV Terms on MLIR英文资料_第2页
Using Wikipedia to Translate OOV Terms on MLIR英文资料_第3页
Using Wikipedia to Translate OOV Terms on MLIR英文资料_第4页
资源描述:

《Using Wikipedia to Translate OOV Terms on MLIR英文资料》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、INCORPORATESUPPORTVECTORMACHINESTOCONTENT-BASEDIMAGERETRIEVALWITHRELEVANTFEEDBACKPengyuHong,QiTian,ThomasS.HuangIFPGroup,BeckmanInstituteUniversityofIllinoisatUrbana-Champaign,Urbana,IL61801,USA{hong,qitian,huang}@ifp.uiuc.eduABSTRACTCurrently,[5,6]onlyusesthepositiveexamplesasfeedba

2、ck.TheinformationimpliedbythenegativeByusingrelevancefeedback[6],Content-BasedImageexamplesisneglected.Moreover,[5,6]requiretheuserRetrieval(CBIR)allowstheusertoretrieveimagestoprovidepreferenceweightsfortherelevantimages,interactively.Beginwithacoarsequery,theusercanwhichsometimesis

3、difficulttaskfortheuser.Anselectthemostrelevantimagesandprovideaweightofexampleofusingboththepositiveandnegativepreferenceforeachrelevantimagetorefinethequery.examples,whicharechosenbytheuser,forimageThehighlevelconceptbornebytheuserandperceptionretrievalcanbefoundinFourEyes[8].Thesy

4、stemlookssubjectivityoftheusercanbeautomaticallycapturedbyatallthelocalmodelsanddetermineswhichmodelorthesystemtosomedegree.Thispaperproposesancombinationofmodelsbestcoversthepositiveexamples,approachtoutilizebothpositiveandnegativefeedbackswhilesatisfyingtheconstraintsimpliedbythene

5、gativeforimageretrieval.SupportVectorMachines(SVM)isexamples.appliedtoclassifyingthepositiveandnegativeimages.Inthispaper,weproposetoapplySupportVectorTheSVMlearningresultsareusedtoupdatetheMachinetolearningpositiveandnegativefeedback.Thepreferenceweightsfortherelevantimages.Thislear

6、ningresultsarefurtherusedtohelpautomaticallyapproachreleasestheuserfrommanuallyprovidingdecidepreferenceweightsforthepositiveimages,whilepreferenceweightforeachpositiveexample.thewayofcalculatingqueryconceptremainthesameExperimentalresultsshowthattheproposedapproach[6].Therestofpaper

7、isorganizedasfollows.Beginninghasimprovementoverthepreviousapproach[5]thatwiththediscussionofrelevancefeedbacktechniqueinusespositiveexamplesonly.section2,webrieflydescribeSupportVectorMachines(SVM)insection3.TheapplicationofSVMtoCBIRis1.Introductionexplainedinsection4.Theproposedmet

8、hodsareteste

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。