Understanding intermediate layers using linear英文文献资料

Understanding intermediate layers using linear英文文献资料

ID:41695497

大小:1.67 MB

页数:9页

时间:2019-08-30

Understanding intermediate layers using linear英文文献资料_第1页
Understanding intermediate layers using linear英文文献资料_第2页
Understanding intermediate layers using linear英文文献资料_第3页
Understanding intermediate layers using linear英文文献资料_第4页
Understanding intermediate layers using linear英文文献资料_第5页
资源描述:

《Understanding intermediate layers using linear英文文献资料》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、UnderstandingintermediatelayersusinglinearclassifierprobesGuillaumeAlain&YoshuaBengioDepartmentofComputerScienceandOperationsResearchUniversitédeMontréalMontreal,QC.H3C3J7guillaume.alain.umontreal@gmail.comAbstractNeuralnetworkmodelshaveareputationforbeingblackboxes

2、.Weproposeanewmethodtounderstandbettertherolesanddynamicsoftheintermediatelayers.Thishasdirectconsequencesonthedesignofsuchmodelsanditenablestheexperttobeabletojustifycertainheuristics(suchastheauxiliaryheadsintheInceptionmodel).Ourmethoduseslinearclassifiers,referre

3、dtoas“probes”,whereaprobecanonlyusethehiddenunitsofagivenintermediatelayerasdiscriminatingfeatures.Moreover,theseprobescannotaffectthetrainingphaseofamodel,andtheyaregenerallyaddedaftertraining.Theyallowtheusertovisualizethestateofthemodelatmultiplestepsoftraining.W

4、edemonstratehowthiscanbeusedtodevelopabetterintuitionaboutaknownmodelandtodiagnosepotentialproblems.1IntroductionTherecenthistoryofdeepneuralnetworksfeaturesanimpressivenumberofnewmethodsandtechnologicalimprovementstoallowthetrainingofdeeperandmorepowerfulnetworks.T

5、hemodelthemselveshadareputationforbeingblackboxes,andtheystillhavethatreputation.Neuralnetworksarecriticizedfortheirlackofinterpretability,whichisatradeoffthatweacceptbecauseoftheiramazingperformanceonmanytasks.Effortshavebeenmadetoidentifytheroleplayedbyeachlayer,b

6、utitcanbehardtofindameaningtoindividuallayers.Therearegoodargumentstosupporttheclaimthatthefirstlayersofaconvolutionnetworkforimagerecognitioncontainfiltersthatarerelatively“general”,inthesensethattheywouldworkgreatevenifweswitchedtoanentirelydifferentdatasetofimages.T

7、helastlayersarespecifictothedatasetbeingarXiv:1610.01644v1[stat.ML]5Oct2016used,andhastoberetrainedwhenusingadifferentdataset.InYosinskietal.(2014)theauthorstrytopinpointtheatwhichthistransitionoccurs,buttheyshowthattheexacttransitionisspreadacrossmultiplelayers.Inth

8、ispaper,weintroducetheconceptofthelinearclassifierprobe,referredtoasa“probe”forshortwhenthecontextisclear.WestartfromtheconceptofShanonentr

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。