《并项分组求和与裂项法》教学设计.doc

《并项分组求和与裂项法》教学设计.doc

ID:38987709

大小:137.52 KB

页数:6页

时间:2019-06-23

《并项分组求和与裂项法》教学设计.doc_第1页
《并项分组求和与裂项法》教学设计.doc_第2页
《并项分组求和与裂项法》教学设计.doc_第3页
《并项分组求和与裂项法》教学设计.doc_第4页
《并项分组求和与裂项法》教学设计.doc_第5页
资源描述:

《《并项分组求和与裂项法》教学设计.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、一、学情分析:学生在前一阶段的学习中已经基本掌握了等差、等比数列这两类最基本的数列的定义、通项公式、求和公式,同时也掌握了与等差、等比数列相关的综合问题的一般解决方法。本节课作为一节专题探究课,将会根据已知数列的特点选择适当的方法求出数列的前n项和,从而培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力。二、教法设计:本节课设计的指导思想是:讲究效率,加强变式训练、合作学习。采用以问题情景为切入点,引导学生进行探索、讨论,注重分析、启发、反馈。先引出相应的知识点,然后剖析需要解决的问题,在例题及变式中巩固相应方法,再

2、从讨论、反馈中深化对问题和方法的理解,从而较好地完成知识的建构,更好地锻炼学生探索和解决问题的能力。在教学过程中采取如下方法:①诱导思维法:使学生对知识进行主动建构,有利于调动学生的主动性和积极性,发挥其创造性;②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性;③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。三、教学设计:1、教材的地位与作用:对数列求和的考查是近几年高考的热点内容之一,属于高考命题中常考的内容;另一个面,数学思想方法的考查在高考中逐年加大了它的份量。化归与转化思想是本课时的重点数学思

3、想方法,化归思想就是把不熟悉的问题转化成熟悉问题的数学思想,即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题上,最终解决原问题的一种数学思想方法;化归思想是解决数学问题的基本思想,解题的过程实际上就是转化的过程。因此,研究由递推公式求数列通项公式中的数学思想方法是很有必要的。2、教学重点、难点:教学重点:根据数列通项求数列的前n项,本节课重点学习并项分组求和与裂项法求和。教学难点:解题过程中方法的正确选择。3、教学目标:(1)知识与技能:会

4、根据通项公式选择求和的方法,并能运用并项分组求和与裂项法求数列的前n项。(2)过程与方法:①培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力;②通过阶梯性练习和分层能力培养练习,提高学生分析问题和解决问题的能力,使不同层次的学生的能力都能得到提高。(3)情感、态度与价值观:①通过对数列的通项公式的分析和探究,培养学生主动探索、勇于发现的求知精神;②通过对数列通项和数列求和问题的分析和探究,使学生养成细心观察、认真分析、善于总结的良好思维习惯;③通过互助合作、自主探究等课堂教学方式培养学生认真参与、积极交流的主体意识

5、。四、教学过程:教 学 步 骤教 学 活 动设计意图一、复习引入(一)巩固: 求下列数列的前n项和:①1+3+5+…+(2n-1)=②=    ③(二)引入1、对一个数列我们应关注它什么?2、对一个非特殊数列,如何求和?(转化为等差、等比数列)3、引导学生回忆数列几种常见的求和方法:①公式法  ②拆并项求和  ③裂项相消法 ④倒序相加法  ⑤错位相减法 4、提出问题:如何对非特殊的数列求和?学生练习,教师提问对于③提示学生要注意分类教师提问,学生回答充分发挥学生学习的能动性,以学生为主体,展开课堂教学通过学生对几种常见的求和方法的归纳

6、、总结,简单回忆各方法的应用背景.把遗忘的知识点形成了一个完整的知识体系二、例题选讲:问题1求下列数列的和(1)1-3+5-7+9+……+101=.(2)设Sn=1-3+5-7+9+……+(-1)n-1(2n-1),求Sn(3).(4)若数列{an}的通项公式为,则数列{an}的前n项和Sn=.教师讲解:(1)分析(一)Sn=(1-3)+(5-7)+(9-11)+……(97-99)+101=分析(二)Sn=1+(-3+5)+(-7+9)+(-11+13)……+(-99+101)=分析(三)Sn=(1+5+……+101)-(3+7+……

7、+99)=分析(四)Sn=1-3+5-7+9+……+101Sn=101-99+97-95+……+1(2)分析:当n=2k(k∈N*)时,Sn=S2k=(1-3)+(5-7)+…+[(4k-3)-(4k-1)]=-2k=-n.当n=2k-1(k∈N*)时,Sn=S2k-1=S2k-a2k=-2k-[-(4k-1)]=2k-1=n.综上所述,有Sn=(-1)n-1n.(3)+()=56-多媒体显示题目学生先独立思考,后讨论,最后教师由学生的回答概括出各种解法。教师小结:(1)并项求和法一个数列的前n项和,可两两结合求解,则称之为并项求和.

8、形如an=(-1)nf(n)类型,可采用两项合并求解.(2)分组求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.通过四个小题,让学生能分析和式的特点,灵

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。