欢迎来到天天文库
浏览记录
ID:38869606
大小:761.00 KB
页数:12页
时间:2019-06-20
《直角三角形的边角关系讲义(4-5)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、直角三角形的边角关系讲义二第4节船有触礁的危险吗本节内容:方向角的定义解直角三角形(重点)解直角三角形的实际应用(难点)1、方向角的定义方向角:方向角是以观察点为中心(方向角的顶点),以正北或正南为始边,旋转到观察目标所形成的锐角,方向角也称象限角。如图,目标方向线0A、0B、0C的方向角分别为北偏东15°、南偏东20°、北偏西60°。其中南偏东45°习惯上又叫东南方向,同样北偏西45°又叫西北方向。如OE的方向角为南偏东45°,OG的方向角为南偏西45°,那么,G、E可以说在O的哪个方向呢?由方向角的定义可知,G在O的西南方向,E在
2、O的东南方向。例1某次台风袭击了我国南部海域。如图,台风来临前,我们海上搜救中心A接到一越南籍渔船遇险的报警,于是指令位于A的正南方向180海里的救援队B立即前往施救。已知渔船所处位置C在A的南偏东34°方向,在B的南偏东63°方向,此时离台风来到C处还有12小时,如果救援船每小时行驶20海里,试问能否在台风来到之前赶到C处对其施救?(参考数据:)2、解直角三角形(重点)在直角三角形中,由已知一些边、角,求出另一些边、角的过程,叫做解直角三角形。在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为。(1)三边之间关系:(2)
3、锐角之间关系:∠A+∠B=90°(3)边角之间关系:(4)面积公式:在直角三角形中,除直角的五个量中,若已知其中的两个量(其中至少有一条边),就可以求出另外三个未知量,有如下四种类型:Rt△ABC中,∠C=90°已知选择的边角关系斜边和一直角边由,求∠A;∠B=90°-∠A,两直角边由,求∠A;∠B=90°-∠A,斜边和一锐角∠B=90°-∠A;;一直角边和一锐角∠B=90°-∠A;,注意:(1)在解直角三角形中,正确选择关系式是关键:①若求边:一般用未知边比已知边,求寻找已知角的某一个三角函数;②若求角:一般用已知边比已知边,去寻找
4、未知角的某一个三角函数;③求某些未知量的途径往往不唯一。选择关系式常遵循以下原则:一是尽量选可以直接应用原始数据的关系式;二是设法选择便于计算的关系式,若能用乘法计算就避免用除法计算。(2)对于含有非基本量的直角三角形,比如有些条件中已知两边之和,中线、高线、角平分线长,角之间的关系,锐角三角函数值,周长、面积等等。对于这类问题,我们常用的解题方法是:将非基本量转化为基本量,或由基本量间关系通过列方程(组),然后解方程(组),求出一个或两个基本量,最终达到解直角三角形的目的。(3)在非直角三角形的问题中,往往是通过作三角形的高,构成直
5、角三角形来解决,而作高时,常从非特殊角的顶点作高;对于较复杂的图形,往往通过“补形”或“分割”的方法,构造出直角三角形,利用解直角三角形的方法,实现问题的有机转化。例2某公园“六一”亲新增设一台滑梯,如图。滑梯高度AC=2m,滑梯着地点B与梯架之间的距离BC=4m。(1)求滑梯AB的长;(结果精确到0.1m)(2)若规定滑梯的倾斜角(∠ABC)不超过45°属于安全范围,请通过计算说明这架滑梯的倾斜角是否符合要求?3、解直角三角形的实际应用(难点)在解决实际问题时,解直角三角形有着广泛的应用,我们要学会将千变万化的实际问题转化为数学问题
6、来解决,具体地说,要求我们善于将某些实际问题中的数量关系归结为直角三角形中的元素(边、角)之间的关系,这样就可运用解直角三角形的方法了。一般有以下几个步骤:1.审题:认真分析题意,根据题目中的已知条件,画出它的平面图,弄清已知和未知;2.明确题目中的一些名词、术语的汉语,如仰角、俯角、跨度、坡角、坡度及方向角;3.是直角三角形的,根据边角关系进行计算;若不是直角三角形,应大胆尝试添加辅助线,把它们分割成一些直角三角形和矩形,把实际问题转化为直角三角形进行解决;4.确定合适的边角关系,细心推理计算。例3台风是一种自然灾害,它以台风中心为
7、圆心在周围数千米范围内形成旋风暴,有极强的破坏力。根据气象观测,距沿海某城市A的正南方向220千米的B处有一台风中心,其中心的最大风力为12级,每远离台风中心20千米,台风就会弱一级。台风中心现正以15千米/时的速度沿北偏东30°方向往C移动,且台风中心风力不变,若城市风力达到或超过4级,则称为受台风影响。(1)该城市是否会受到这次台风的影响?请说明理由。(2)若会受到台风影响,那么台风影响该市的持续时间有多长?典型例题:例1在△ABC中,已知AB=1,AC=,∠ABC=45°,求BC的长。例2如图,甲、乙两只捕捞船同时从A港出海捕鱼
8、。甲船以每小时15千米的速度沿北偏西60°方向前进,乙船以每小时15千米的速度沿东北方向前进。甲船航行2小时到达C处,此时甲船发现鱼具丢在了乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶,结果两船在B处相遇。(1)
此文档下载收益归作者所有