欢迎来到天天文库
浏览记录
ID:38824776
大小:24.50 KB
页数:6页
时间:2019-06-19
《高中数学课堂中变式教学的案例分析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、高中数学课堂中变式教学的案例分析 摘要:变式教学,核心是利用构造一系列变式的方法来展现出知识的变化发展,体现数学结构的演变,同时创造出一种变式思维方式,促进有效思维的发展。将题目的本质固定不变,解题思路或解题方法多样化来拓展思维空间,加强训练,突出要强调的本质要素。本文通过分析高中数学变式教学的方式,来阐述变式教学的重要性,体现变式教学的作用。 关键词:高中数学;变式教学;拓展性思维 数学是研究数量、结构、变化以及空间模型等概念的一门学科。信息时代的到来使得人们对于数学越来越关注,数学也由此作为从小培育的科目。在高中,数学
2、的地位更是无与伦比,一度有“得数学者得高考”这一说法。因为数学独特的魅力和至高的地位,数学的学习方法也逐渐由专人来研究发表。近年来,数学的变式教学这一方式颇受重视,变式教学着重培养发散性思维,强调一题多解或变化多种题型而不改变其解题本质。 1.高中数学变式教学的基本原则 变式教学有着独特的技巧,一般来说,在课堂中进行变式教学时,要有着变式的意义,如果变式的目的不能达到使学生得到多样性思考,或是变式的结果没有答案,那么这种变式就是失败的,没有意义可言。变式教学的原则还得具有启迪性,能够给学生带来思考,下次面对类似题型的时候,能
3、够举一反三。要知道,天下题目万变不离其宗,即使是高考的数学题目,相信也是变式得到的拓展型题型,掌握试题的本质就能够面对所谓创新而无所畏惧。与此同时,变式教学要有着创新性,只拘泥于一种题型的变式不能得到更多的效果,数学题目就是要不断地创新发展,不断变化,才能符合实际教学和学生实际学习的需要。 2.高中数学变式教学研究分析 2.1概念性变式 数学的概念给给学生进行教学一般分为概念形成、概念深化和概念应用三个阶段,它们分别是概念教学的基础、前提和目的。例如异面直线的概念为:不同在任何一个平面内的两条直线叫做异面直线,变式之后可以
4、理解为①空间两条不相交直线是异面直线②不相交和不平行的直线称为异面直线③不同在同一个平面内的两条直线是异面直线④分别在两个不同平面内的两条直线是异面直线。这一结论可以通过立体的图形设计出多样的位置关系,直观的发映出异面直线概念的特征,从而对学生解题思路加以扩展。在概念形成阶段到概念运用阶段,即表象-定义-理解-运用的过程中,不同的学生会有不用的理解差异,这就需要教师因材施教,给学生最正确的解释。 2.2过程性变式 学生通过对概念的理解之后,就要开始习题的练习以巩固学到的知识。但这种巩固不能是机械式的照本宣科的联系,将习题进行
5、变换,从简单到复杂,逐渐锻炼学生独立思考的能力和解题能力。一般的教学过程中,教师会先给学生复习概念,然后给出初步的较为简单的命题,给学生分析思路,作出解答,这种方法较为常见,但是略显枯燥,无法激发学生独立思考的动力,对知识的巩固也就不能得以完善。如在学习函数时,函数的几点特征如单调性、区间等都是要着重讲解的,面对同样的函数例如y=x2,在没有区间限制的情况下,是先减后增,但是在区间限制的情况下,就有着不同的解释,对区间变化就会有多种不同的答案。这样可以拓展学生的思维能力和想象空间,寻找到好的解题方法。一种好的解题方法能将数学知识
6、综合系统的联系起来,而多种方法解题有利于思路的扩展,掌握数学基本知识并综合利用。 3.高中数学变式教学研究方法 高中数学变式的教学研究方法有文献综述法和案例研究法。文献综述法即通过对已有文献的研究,总结归纳多种教学方式,寻找到适合自己的教学方式,继而对自己的教学方式进行总结,形成独具一格的教学体系。案例研究法则是在文献综述法的基础上进行实践研究,通过变式来检验教学成果,检测学生是否掌握了理论性知识,是否能够自主的思考来解决难题。变式教学对高中数学教育相当重要,在例题的设计上,要有针对性,针对结论的本质特征进行设计,设计要有层
7、次性,用复杂的题目加强巩固。设计的变式题目中表面上是看不出来有什么特别的联系,但是本质却是相同的,只是需要换个思路或者换个方法就能总结出一般规律,得到想要的结果。 4.高中数学变式教学作用 高中数学变式教学是一项重要的教学方式,高考中几乎大题目都有两点以上的小问题,一般第一题比较简单,第二题第三题则是在第一题的基础上变式得到的,虽然具有迷惑性,但是本质是不变的。在课堂上,教师就通过变式来进行知识点的深入理解和讲解。变式教学能够帮助学生提高对知识的理解,加强记忆,比如说前文提到的异面直线的问题,光是给学生进行概念性的讲解并不能
8、帮助他们理解问题,但是辅以立体图形,更能直观的表现异面直线不相交的特点,提高学生对知识理解的准确性。同时要知道,数学上对于正确理论追求的是深刻性思维,变式教学是在理论和例题的基础上进行的升华,难度性是可想而知的,要想得到提高,一定要对基础知识有深刻的思考能力,再
此文档下载收益归作者所有