欢迎来到天天文库
浏览记录
ID:38799892
大小:98.03 KB
页数:8页
时间:2019-06-19
《等积变形习题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、六年级奥数解析(七十)形体的等积变形[2013-3-212:57:00
2、By: spring ] 4推荐 《奥赛天天练》第42讲《形体的等积变形》。在实际生活中有些物质如金属、橡皮泥、或装在容器里的液体等,可以通过重塑或更换容器等改变原来的形状,在这个变换的过程中物体的形状发生了变化,体积不变,这就是形体的等积变形。本专题学习,需要学生熟练掌握并能灵活运用长方体、正方体、圆柱、圆锥的体积计算公式。解答此类问题的关键是抓住题中隐藏的等量关系:物体在改变形状的过程中体积不变,即形状发生改变前后物体的体积相等。《奥赛天天练》第
3、42讲,模仿训练,练习1【题目】:在底面半径是10厘米的圆柱形杯中装有7厘米高的水,把一小块铁浸入水中,这时水面上升到9厘米,问这块铁块的体积有多大?【解析】:这块铁块的体积就是圆柱形杯中上升的那部分水的体积(即底面半径为10厘米,高为2厘米的圆柱形体积):3.14×102×(9-7)=628(立方厘米)。《奥赛天天练》第42讲,模仿训练,练习2 【题目】:有甲、乙两个容器如图所示,(长度单位:厘米),先将甲容器注满水,然后将水倒入乙容器,求乙容器的水深。【解析】:先求出倒入甲容器的水的体积:3.14×62×1
4、0×1/3=376.8(立方厘米)再用水的体积除以乙容器的底面积,求出乙容器的水深:378.6÷(3.14×42)=7.5(厘米)。注:此类习题列综合算式,先约分再计算,可以使计算更加简洁。《奥赛天天练》第42讲,巩固训练,习题1【题目】:把一块长19厘米,宽5厘米,高3厘米的长方体铝块和一个棱长为7厘米的正方体铝块熔铸成一个底面周长为31.4厘米的圆柱形的铝块,求圆柱形铝块的高是多少厘米?【解析】:熔铸成的圆柱形铝块的体积就等于长方体铝块和正方体铝块的体积之和:19×5×3+73=628(立方厘米)用圆柱形铝块的体积除以
5、它的底面积,可以求出它的高为:628÷[3.14×(31.4÷3.14÷2)2]=8(厘米)。《奥赛天天练》第42讲,巩固训练,习题2【题目】: 在一个底面半径是20厘米的圆柱形水桶里,有一个底面半径为10厘米的圆柱形钢材完全浸没在水中,当钢材从桶里取出后,桶里的水面下降3厘米,求这段钢材的长。【解析】:圆柱形钢材的体积就等于水桶里下降的那部分水的体积(即底面半径为20厘米,高为3厘米的圆柱形体积):3.14×202×3=3768(立方厘米)所求
6、钢材的长为:3768÷(3.14×102)=12(厘米)。《奥赛天天练》第42讲,拓展提高,习题1【题目】:有两个等高的圆柱体,小圆柱体底面积是50平方厘米,大圆柱体的底面直径比小圆柱体大20%,大圆柱体的体积为360立方厘米,求小圆柱体的体积。【解析】:要求出小圆柱体的体积,已知小圆柱体的底面积,还需要先求出小圆柱体的高。因为两个圆柱体等高,只求出大圆柱体的高就等于小圆柱体的高。由“大圆柱体的底面直径比小圆柱体大20%”,可以求出大、小圆柱体底面直径之比为:(1+20%):1=6 :5则两个圆柱的底面积比为:62 :52
7、=36 :25解法一:又因为小圆柱体底面积是50平方厘米,可以求出大圆柱体的底面积为:50×36/25=72(平方厘米)则大圆柱体的高为:360÷72=5(厘米)即小圆柱体的高也是5厘米,可以求出小圆柱体的体积为:50×5=250(立方厘米)。解法二:等高的两个圆柱体的体积与底面积成正比例,即它们的体积比就等于它们的底面积之比:36 :25可以直接求出小圆柱体的体积为:360÷36/25=250(立方厘米)。《奥赛天天练》第42讲,拓展提高,习题2【题目】:甲、乙两个圆柱体容器,底面积之比为4 :3,甲容器水深7厘米,乙容
8、器水深3厘米,再往两个容器各注入同样多的水,直到水深相等,这是水深多少厘米?【解析】:当两个容器中水深相等时,容器中水的体积比就等于两个容器的底面积之比为: 4 :3。如果把甲容器中1厘米深的水量看作4份,则乙容器中1厘米深的水量就有3份。甲容器中已有水量为:4×7=28(份)乙容器中已有水量为:3×3=9(份)假设后来注入两个容器中的水都是x份,由题意可得:(28+x):(9+x)=4 :3解比例得:x=48所求水的深度为:(28+48)÷4=19(厘米)。 等积变形练习题1,一个盛水的圆柱形水桶,内底面周长为6028分
9、米,当一个长方形的物体投入水中时,水面上升1分米,量得这个长方体的长为3.14分米,宽为1分米,他的高是多少?2,在长为15厘米,宽为12厘米的长方体水箱中,有10厘米深的水,现沉入一个高为10厘米的圆锥形铁块(全部浸入水中),水面上升了2厘米,求圆锥的底面积?3,甲,乙两个圆柱体容器,底面积比为4:3
此文档下载收益归作者所有