一阶倒立摆含观测器的状态反馈控制系统综合与设计

一阶倒立摆含观测器的状态反馈控制系统综合与设计

ID:38733196

大小:235.00 KB

页数:10页

时间:2019-06-18

一阶倒立摆含观测器的状态反馈控制系统综合与设计_第1页
一阶倒立摆含观测器的状态反馈控制系统综合与设计_第2页
一阶倒立摆含观测器的状态反馈控制系统综合与设计_第3页
一阶倒立摆含观测器的状态反馈控制系统综合与设计_第4页
一阶倒立摆含观测器的状态反馈控制系统综合与设计_第5页
资源描述:

《一阶倒立摆含观测器的状态反馈控制系统综合与设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、广西大学实验报告实验内容:一阶倒立摆含观测器的状态反馈控制系统综合与设计张凯强(0902100202)、毛世博(0902100110)、李季(0902100206)一、实验时间:2013.3.8二、实验地点:综合楼702三、实验目的1、理解并掌握线性状态反馈控制的原理和方法;2、理解并掌握线性观测器的设计方法;3、练习控制性能比较与评估的方法。四、实验设备与软件:1、倒立摆试验台2、MATLAB软件五、实验原理1、被控对象模型及其线性化根据牛顿定律建立系统垂直和水平方向的动力学方程,计及u=F,得(1)(2)保留低阶项,项,忽略微小的高次项,在竖直位置处进行线性化。由(1)(

2、2)得(3)(4)令,,输入为,则状态方程为(5)代入参数,忽略摩擦得(6)该状态方程输入是加速度,输出是小车位置和摆杆角度。2、时不变线性连续系统的状态反馈控制与观测器对时不变线性连续系统以系统状态为反馈变量产生控制这种控制方式称为状态反馈控制,但状态作为系统内部变量,一般很难直接测出,为此引入状态观测器。全维状态观测器的动态方程为若输出矩阵C为满秩时,可设计较简单的降维状态观测器,其最小维数为n-m(n代表状态个数,m代表输出个数)。六、实验内容1、状态反馈及极点配置(1)能控性检查:输入代码:clear;A=[0100;0000;0001;0029.40];B=[010

3、3]';C=[1000;0100];D=[00]';Uc=ctrb(A,B);rank(Uc)输出:ans=4系统能控性矩阵满秩,即系统状态完全能控。(2)系统极点配置选取系统主导极点:,闭环非主导极点距虚轴的距离为主导极点的5倍以上,则取:,输入代码:clear;A=[0100;0000;0001;0029.40];B=[0103]';P=[-10-0.0001*j,-10+0.0001*j,-2-2*sqrt(3)*j,-2+2*sqrt(3)*j];K=place(A,B,P)输出:K=-54.4218-24.489893.273916.1633(3)极点配置系统仿真根

4、据系统空间表达式,搭建模型。仿真波形如图从仿真结果可以看出,小车最终稳定,小车速度,摆杆角度,角速度最终都稳定在0位置,小车位置超调≤5%,调整时间≤2s,基本符合控制要求。2、采用状态观测器的状态反馈系统设计(1)闭环观测器极点配置<1>判断可观性输入代码:A=[0100;0000;0001;0029.40];B=[0;1;0;3];C=[1000;0010];D=0;sys=ss(A,B,C,D);observe_matrix=obsv(A,C);rank_of_obsv=rank(observe_matrix)输出:rank_of_obsv=4系统完全可观。输出矩阵C的

5、秩为2,所以降维观测器的最小维数为4-2=2。<2>设定降维观测器的期望极点观测器特征值的选取一般是状态反馈配置极点2-3倍,所以选取状态观测器为-5,-5。输入代码:R=[0100;0001];P=[C;R];invP=inv(P);p=[-5;-5];<3>求取等价系统的模型输入代码:AA=P*A*invPA11=[AA(1:2,1:2)];A12=[AA(1:2,3:4)];A21=[AA(3:4,1:2)];A22=[AA(3:4,3:4)];BB=P*BB1=BB(1:2);B2=BB(3:4);CC=C*invP输出:AA=001.000000001.000000

6、00029.400000BB=0013CC=10000100<4>求取矩阵L输入代码:symsssystem_eq=expand((s-p(1))*(s-p(2)))symsL_1L_2L_3L_4symssL=[L_10;0L_4];eq=collect(det(s*eye(2)-(A22-L*A12)),s)输出:system_eq=s^2+10*s+25eq=s^2+(L_1+L_4)*s+L_1*L_4选取L=LL=[50;05];<5>求取降维观测器的动态方程输入代码:AW=(A22-LL*A12)BU=(B2-LL*B1)BY=(A21-LL*A11)+(A22-

7、LL*A12)*LLCW=invP(1:4,3:4)DY=invP(1:4,1:2)+invP(1:4,3:4)*LL输出:AW=-500-5BU=13BY=-25.0000004.4000CW=00100001DY=10500105(1)系统仿真仿真波形如图与不带观测器的状态反馈波形基本一致,达到预期效果。从仿真结果可以看出,小车最终稳定,小车速度,摆杆角度,角速度最终都稳定在0位置,调整时间<2s,符合控制要求。3、实验平台调试不带观测器的状态反馈:带降维观测器的状态反馈:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。