欢迎来到天天文库
浏览记录
ID:38674475
大小:1.62 MB
页数:20页
时间:2019-06-17
《18.2.1特殊的平行四边形(新)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、四个学生正在做投圈游戏,他们分别站在一个矩形的四个顶点处,目标物放在对角线的交点处,这样的队形对每个人公平吗?为什么?OABCD生活链接---投圈游戏ABCD19.2特殊的平行四边形19.2.1矩形两组对边分别平行的四边形是平行四边形ABCD四边形ABCD如果AB∥CDAD∥BCBDABCDAC平行四边形的性质:边平行四边形的对边平行;平行四边形的对边相等;角平行四边形的对角相等;平行四边形的邻角互补;对角线平行四边形的对角线互相平分;温故知新有一个角是直角的平行四边形是矩形矩形的定义:平行四边形矩形有一个角是直角矩形是特殊的平行四
2、边形具备平行四边形所有的性质ABCDO角边对角线对边平行且相等对角相等对角线互相平分矩形的一般性质:探索新知:矩形是一个特殊的平行四边形,除了具有平行四边形的所有性质外,还有哪些特殊性质呢?猜想1:矩形的四个角都是直角.猜想2:矩形的对角线相等.ABCD求证:矩形的四个角都是直角.已知:如图,四边形ABCD是矩形求证:∠A=∠B=∠C=∠D=90°ABCD证明:∵四边形ABCD是矩形∴∠A=90°又矩形ABCD是平行四边形∴∠A=∠C∠B=∠D∠A+∠B=180°∴∠A=∠B=∠C=∠D=90°即矩形的四个角都是直角已知:如图,四边
3、形ABCD是矩形求证:AC=BDABCD证明:在矩形ABCD中∵∠ABC=∠DCB=90°又∵AB=DC,BC=CB∴△ABC≌△DCB∴AC=BD即矩形的对角线相等求证:矩形的对角线相等矩形特殊的性质矩形的四个角都是直角.矩形的两条对角线相等.从角上看:从对角线上看:矩形的两条对角线互相平分矩形的两组对边分别平行矩形的两组对边分别相等矩形的四个角都是直角矩形的两条对角线相等边对角线角数学语言∵四边形ABCD是矩形∴AD=BC,CD=AB∴AD∥BC,CD∥AB∴AC=BDABCDO∴AO=CO,OD=OB矩形的性质观察并思考下面这
4、些物体是什么形状,它们是轴对称图形吗?是中心对称图形吗?有几条对称轴?边角对角线对称性平行四边形矩形比一比,知关系对边平行且相等对角相等邻角互补对角线互相平分中心对称图形对边平行且相等四个角为直角对角线互相平分且相等中心对称图形轴对称图形O这是矩形所特有的性质四个学生正在做投圈游戏,他们分别站在一个矩形的四个顶点处,目标物放在对角线的交点处,这样的队形对每个人公平吗?为什么?OABCD公平,因为OA=OC=OB=OD生活链接---投圈游戏已知:在Rt△ABC中,∠ABC=900,BO是AC上的中线.求证:BO=ACOCBAD证明:延
5、长BO至D,使OD=BO,连结AD、DC.∵AO=OC,BO=OD∴四边形ABCD是平行四边形.∵∠ABC=900∴ABCD是矩形∴AC=BD1212∴BO=BD=AC再探新知例1:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4㎝,求矩形对角线的长?∴AC与BD相等且互相平分∴OA=OB∵∠AOB=60°∴△AOB是等边三角形∴OA=AB=4(㎝)∴矩形的对角线长AC=BD=2OA=8(㎝)解:∵四边形ABCD是矩形DCBAo已知:如图,矩形ABCD的两条对角线相交于点O,∠AOD=120°,AC=8cm,求矩
6、形对角线的长.ABOCD解:在矩形ABCD中,∵∠AOD=120°∴∠AOB=60°∵OA=OB∴△AOB为等边三角形∴AB=OA=AC=4cm在Rt△ABC中,≈6.93(cm)BC===方法小结:如果矩形两对角线的夹角是60°或120°,则其中必有等边三角形.本课小结矩形的四个角都是直角.※矩形的性质定理1矩形的对角线相等.※矩形的性质定理2※推论直角三角形斜边上的中线等于斜边的一半.矩形定义:有一个角是直角的平行四边形叫做矩形.课后作业:1.P104练习第3题2.P102习题19.2第4、题9谢谢!
此文档下载收益归作者所有