线性回归方程习题

线性回归方程习题

ID:38664597

大小:50.07 KB

页数:2页

时间:2019-06-17

线性回归方程习题_第1页
线性回归方程习题_第2页
资源描述:

《线性回归方程习题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、例1下面是水稻产量与施化肥量的一组观测数据:施化肥量15202530354045水稻产量320330360410460470480(1)将上述数据制成散点图;(2)你能从散点图中发现施化肥量与水稻产量近似成什么关系吗?水稻产量会一直随施化肥量的增加而增长吗?例2(14分)随着我国经济的快速发展,城乡居民的生活水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查了10个家庭,得数据如下:家庭编号12345678910xi(收入)千元0.81.11.31.51.51.82.02.22.42.8yi(支出)千元0.

2、71.01.21.01.31.51.31.72.02.5(1)判断家庭平均收入与月平均生活支出是否相关?(2)若二者线性相关,求回归直线方程.例3下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨)标准煤的几组对照数据.x3456y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=x+;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(

3、参考数值:3×2.5+4×3+5×4+6×4.5=66.5)1.科研人员为了全面掌握棉花新品种的生产情况,查看了气象局对该地区年降雨量与年平均气温的统计数据(单位分别是mm,℃),并作了统计.年平均气温12.5112.8412.8413.6913.3312.7413.05年降雨量748542507813574701432(1)试画出散点图;(2)判断两个变量是否具有相关关系.2.在研究硝酸钠的可溶性程度时,对于不同的温度观测它在水中的溶解度,得观测结果如下:温度(x)010205070溶解度(y)66.776.085.0112.3128

4、.0由资料看y与x呈线性相关,试求回归方程.3.某企业上半年产品产量与单位成本资料如下:月份产量(千件)单位成本(元)127323723471437354696568(1)求出线性回归方程;(2)指出产量每增加1000件时,单位成本平均变动多少?(3)假定产量为6000件时,单位成本为多少元?2一、填空题1.观察下列散点图,则①正相关;②负相关;③不相关.它们的排列顺序与图形对应顺序是.2.回归方程=1.5x-15,则下列说法正确的有个.①=1.5-15②15是回归系数a③1.5是回归系数a④x=10时,y=03.(2009.湛江模拟)

5、某地区调查了2~9岁儿童的身高,由此建立的身高y(cm)与年龄x(岁)的回归模型为=8.25x+60.13,下列叙述正确的是.①该地区一个10岁儿童的身高为142.63cm②该地区2~9岁的儿童每年身高约增加8.25cm③该地区9岁儿童的平均身高是134.38cm④利用这个模型可以准确地预算该地区每个2~9岁儿童的身高4.三点(3,10),(7,20),(11,24)的回归方程是.5.某人对一地区人均工资x(千元)与该地区人均消费y(千元)进行统计调查,y与x有相关关系,得到回归直线方程=0.66x+1.562.若该地区的人均消费水平为

6、7.675千元,估计该地区的人均消费额占人均工资收入的百分比约为.6.某化工厂为预测产品的回收率y,需要研究它和原料有效成分含量x之间的相关关系,现取8对观测值,计算,得=52,=228,=478,=1849,则其线性回归方程为.7.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其断面直径与高度之间的关系.其中,具有相关关系的是.8.已知关于某设备的使用年限x与所支出的维修费用y(万元),有如下统计资料:使用年限x23456维修费用y2.23

7、.85.56.57.0若y对x呈线性相关关系,则回归直线方程=x+表示的直线一定过定点.二、解答题9.期中考试结束后,记录了5名同学的数学和物理成绩,如下表:学生学科ABCDE数学8075706560物理7066686462(1)数学成绩和物理成绩具有相关关系吗?(2)请你画出两科成绩的散点图,结合散点图,认识(1)的结论的特点.10.以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:房屋面积x(m2)11511080135105销售价格y(万元)24.821.618.429.222(1)画出数据对应的散点图;(2)求线性回归方

8、程,并在散点图中加上回归直线.11.某公司利润y与销售总额x(单位:千万元)之间有如下对应数据:x10151720252832y11.31.822.62.73.3(1)画出散点图;(2)求回归直线方程;(3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。