欢迎来到天天文库
浏览记录
ID:38620646
大小:1.57 MB
页数:25页
时间:2019-06-16
《14.1 .1勾股定理--直角三角形三边的关系》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、14.1勾股定理教学目标:体验勾股定理的探索过程,会运用勾股定理解决相关问题;感受数学文化的价值和我国传统数学的成就。问题解决问题情境某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?(图中每一格代表一平方厘米)观察左图:(1)正方形P的面积是平方厘米。(2)正方形Q的面积是平方厘米。(3)正方形R的面积是平方厘米。121上面三个正方形的面积之间有什么关系?SP+SQ=SRRQPACBAC2+BC2=AB2等腰直角三角形ABC三边长度之间存
2、在什么关系吗?活动一Sp=AC2SQ=BC2SR=AB2直角边直角边斜边这说明在等腰直角三角形ABC中,两直角边的平方和等于斜边的平方想一想那么,在一般的直角三角形中,两直角边的平方和是否等于斜边的平方呢?QPR图1-3QPR图1-4把R看作是四个直角三角形的面积+小正方形面积。P的面积(单位长度)Q的面积(单位长度)R的面积(单位长度)图2图3P、Q、R面积关系直角三角形三边关系91625QPR图3QPR图4把R看作是大正方形面积减去四个直角三角形的面积。S正方形R探究活动P的面积(单位长度)Q的面积(单位长度)R的面积(单位长度)图2
3、图3P、Q、R面积关系直角三角形三边关系QPR图2QPR图3ABCABC916259413SP+SQ=SRBC2+AC2=AB2(每一小方格表示1平方厘米)直角边直角边斜边分别以5cm、12cm为直角三角形的直角边作出一个直角三角形ABC,测量斜边的长度,然后验证上述关系对这个直角三角形是否成立。做一做13512ABC概括对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有a2+b2=c2直角三角形两直角边的平方和等于斜边的平方.揭示了直角三角形三条边的关系aABCbc几何语言:∵在Rt△ABC中∠C=90°(已知)∴
4、a2+b2=c2(勾股定理)勾股定理:∟两千多年前,古希腊有个哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯年希腊曾经发行了一枚纪念票。定理。为了纪念毕达哥拉斯学派,1955勾股世界国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家多年两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希
5、腊曾经发行了一枚纪念邮票。我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中。勾股定理史话勾股定理从被发现到现在已有五千年的历史,远在公元前三千年的巴比伦人就知道和应用它了。我国古代也发现了这个定理,据《周髀算经》记载,商高(公元前1120年)关于勾股定理已有明确的认识,《周髀算经》中有商高答周公的话:“勾广三,股修四,径隅五。”同书中还有另一为学者陈子(公元前六七世纪)与荣方的一段对话
6、:“求邪(斜)至日者,以日下为勾,日高为股,勾、股各自乘,并而开方除之,得邪(斜)至日”即邪至日2=勾2+股2陈子已不限于:三、四、五的特殊情形,而是推广到一般情形了。人们对勾股定理的认识,经历过一个从特殊到一般的过程,很难区分是谁最先发明的.勾股定理曾引起很多人的兴趣,世界上对这个定理的证明方法很多,1940年卢米斯收集了这个定理的370种证明,期中包括大画家达·芬奇和美国总统詹姆士·阿·加菲尔德的证法。到目前为止,已有四百多种证法.bac勾股定理的证明(一)abcabcabc最早是由1700多年前三国时期的数学家赵爽为《周髀算经》作注时
7、给出的,他用面积法证明了勾股定理你能用面积法证明勾股定理吗?“弦图”bac勾股定理的证明(二)bacbacbac美国第二十任总统伽菲尔德的证法在数学史上被传为佳话人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。有趣的总统证法S梯形=(a+b)(a+b)=(a2+b2)+abS梯形=c2+2·ab=c2+ab即:在Rt△ABC中,∠C=90°c2=a2+b2伽菲尔德证法117页第1题课堂练习求出下列直角三角形中未知边的长度。6x25248X111页例1总结对于任意的直角三角形,如果它的两条直角边分别为a、b
8、,斜边为c,那么一定有a2+b2=c2直角三角形两直角边的平方和等于斜边的平方.aABCbc几何语言:∵在Rt△ABC中∠C=90°(已知)∴a2+b2=c2(勾股定理)勾股定理
此文档下载收益归作者所有