北大暑期课程《回归分析》(Linear Regression Analysis)讲义2

北大暑期课程《回归分析》(Linear Regression Analysis)讲义2

ID:38620468

大小:183.50 KB

页数:7页

时间:2019-06-16

北大暑期课程《回归分析》(Linear Regression Analysis)讲义2_第1页
北大暑期课程《回归分析》(Linear Regression Analysis)讲义2_第2页
北大暑期课程《回归分析》(Linear Regression Analysis)讲义2_第3页
北大暑期课程《回归分析》(Linear Regression Analysis)讲义2_第4页
北大暑期课程《回归分析》(Linear Regression Analysis)讲义2_第5页
资源描述:

《北大暑期课程《回归分析》(Linear Regression Analysis)讲义2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、Class2,Page7Class2:Basicsofmatrix(2)Linearregression.I.Basicsofmatrix(2)1.InverseofaMatrixTheinverseofasquarematrixexistsifthematrixisnonsingular.TheinverseA-1isdefinedas:A-1A=AA-1=IAlternatively,theconditioncanbeexpressedinthreeotherforms:(1)Ahasrank

2、n,(2)thenrowsarelinearlyindependent,and(3)thencolumnsarelinearlyindependent.Inverseisadifficultoperation.Usuallywecanusecomputersoftwarestofindtheinverse.Hereweonlywanttoknowasimpleexample.Fora2x2matrix:A-1=whereDisthedeterminantofA.D(A)=ad-bc.2.Deter

3、minantofaMatrixThedeterminantofamatrixisascale.Anonsingularmatrixhasanon-zerodeterminant.3.OperationRulesofMatricesA=Bmeansforalli,jA+B=B+A(A+B)+C=A+(B+C)(AB)C=A(BC)C(A+B)=CA+CBc(A+B)=cA+cB,wherecisascalarIA=AI=AA+O=AAO=OA=O(A')'=A(A+B)'=A'+B'(AB)'=B'

4、A'(ABC)'=C'B'A'(AB)-1=B-1A-1,providedAandBareeachnonsingular(proof:ABB-1A-1=I)(ABC)-1=C-1B-1A-1(A-1)-1=A(A’)-1=(A-1)’4.Variance-covariancematrixForavectorofvariablesbwithelements(b0,b1,…bk),itsvariance-covariancematrixClass2,Page7II.LinearRegressionwi

5、thaSingleRegressor(SimpleRegression)Forsimplelinearregression,welearned,Weassumethatthismodelistrueonlyinthepopulation.Whatwecanobserve,however,isasample.Forasampleoffixedsizei=1,...n,wecanwritethemodelinthefollowingway:(1)whereLetusfurtherassumethata

6、ndEquation(1)becomes(2)[expandfromthematrixformintotheelementform]Class2,Page7...Pre-multiply(2)byX'(3)Weset(orthogonalitycondition),meaning(firstelement);(secondelement).Giventheorthogonalitycondition,wecaneasilysolvebas(5),Whydoweassumetheorthogonal

7、itycondition?Becauseorthogonalitygivestheleastsquaressolution–bestlinearpredictor.[Blackboard]Partialwithrespecttosettozero.Inpractice,wedon'tknowwhetherXsatisfiestheorthogonalitycondition.Weusuallymaketheassumption:Notethatthefirstassumptionmeansorth

8、ogonalitybetween1and.Thesecondassumptionmeansthatxisnotcorrelatedwith.Similarly,Class2,Page7DetLetussolveforbThus,bisindeedyouroldfriend:Class2,Page7b=III.InferenceofRegressionCoefficients(simpleregression)A.Defineexpectationofavector:takeexpe

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。