SAS显著性检验原理及应用

SAS显著性检验原理及应用

ID:38572809

大小:1.65 MB

页数:32页

时间:2019-06-15

SAS显著性检验原理及应用_第1页
SAS显著性检验原理及应用_第2页
SAS显著性检验原理及应用_第3页
SAS显著性检验原理及应用_第4页
SAS显著性检验原理及应用_第5页
资源描述:

《SAS显著性检验原理及应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、显著性检验显著性检验即用于实验处理组与对照组或两种不同处理的效应之间是否有差异,以及这种差异是否显著的方法。常把一个要检验的假设记作H0,称为原假设(或零假设)(nullhypothesis),与H0对立的假设记作H1,称为备择假设(alternativehypothesis)。⑴在原假设为真时,决定放弃原假设,称为第一类错误,其出现的概率通常记作α;⑵在原假设不真时,决定接受原假设,称为第二类错误,其出现的概率通常记作β。通常只限定犯第一类错误的最大概率α,不考虑犯第二类错误的概率β。这样的假设检验又称为显著性检验,概率α称为显著性水平。最常用的α值为0.01、0.05

2、、0.10等。一般情况下,根据研究的问题,如果放弃真假设损失大,为减少这类错误,α取值小些,反之,α取值大些。显著性检验原理无效假设显著性检验的基本原理是提出“无效假设”和检验“无效假设”成立的机率(P)水平的选择。所谓“无效假设”,就是当比较实验处理组与对照组的结果时,假设两组结果间差异不显著,即实验处理对结果没有影响或无效。经统计学分析后,如发现两组间差异是抽样引起的,则“无效假设”成立,可认为这种差异为不显著(即实验处理无效)。若两组间差异不是由抽样引起的,则“无效假设”不成立,可认为这种差异是显著的(即实验处理有效)。“无效假设”成立的机率水平检验“无效假设”成立

3、的机率水平一般定为5%,其含义是将同一实验重复100次,两者结果间的差异有5次以上是由抽样误差造成的,则“无效假设”成立,可认为两组间的差异为不显著,常记为p>0.05。若两者结果间的差异5次以下是由抽样误差造成的,则“无效假设”不成立,可认为两组间的差异为显著,常记为p≤0.05。如果p≤0.01,则认为两组间的差异为非常显著。/*注:显著性水平通常是指能够犯第一类错误(原假设为真而拒绝原假设)的水平,假设P>检验值的概率为0.07,是指犯第一类错误的概率为7%,高于5%,故接受原假设。*/显著性检验基本思想显著性检验的基本思想可以用小概率原理来解释。1、小概率原理:小

4、概率事件在一次试验中是几乎不可能发生的,假若在一次试验中事件事实上发生了。那只能认为事件不是来自我们假设的总体,也就是认为我们对总体所做的假设不正确。2、观察到的显著水平:由样本资料计算出来的检验统计量观察值所截取的尾部面积为。这个概率越小,反对原假设,认为观察到的差异表明真实的差异存在的证据便越强,观察到的差异便越加理由充分地表明真实差异存在。3、检验所用的显著水平:针对具体问题的具体特点,事先规定这个检验标准。4、在检验的操作中,把观察到的显著性水平与作为检验标准的显著水平标准比较,小于这个标准时,得到了拒绝原假设的证据,认为样本数据表明了真实差异存在。大于这个标准时

5、,拒绝原假设的证据不足,认为样本数据不足以表明真实差异存在。5、检验的操作可以用稍许简便一点的作法:根据所提出的显著水平查表得到相应的值,称作临界值,直接用检验统计量的观察值与临界值作比较,观察值落在临界值所划定的尾部内,便拒绝原假设;观察值落在临界值所划定的尾部之外,则认为拒绝原假设的证据不足。几种常见的假设检验方法T检验:适用于计量资料、正态分布、方差具有齐性的两组间小样本比较。包括配对资料间、样本与均数间、两样本均数间比较三种,三者的计算公式不能混淆。(处理时不用判断分布类型就可以使用t检验)T’检验:应用条件与t检验大致相同,但t′检验用于两组间方差不齐时,t′检

6、验的计算公式实际上是方差不齐时t检验的校正公式。U检验:应用条件与t检验基本一致,只是当大样本时用U检验,而小样本时则用t检验,t检验可以代替U检验。方差分析:用于正态分布、方差齐性的多组间计量比较。常见的有单因素分组的多样本均数比较及双因素分组的多个样本均数的比较,方差分析首先是比较各组间总的差异,如总差异有显著性,再进行组间的两两比较,组间比较用q检验或LST检验等。X2检验:是计数资料主要的显著性检验方法。用于两个或多个百分比(率)的比较。常见以下几种情况:四格表资料、配对资料、多于2行*2列资料及组内分组X2检验。零反应检验:用于计数资料。是当实验组或对照组中出现

7、概率为0或100%时,X2检验的一种特殊形式。属于直接概率计算法。非参数统计方法:符号检验、秩和检验和Ridit检验。三者均属非参数统计方法,共同特点是简便、快捷、实用。可用于各种非正态分布的资料、未知分布资料及半定量资料的分析。其主要缺点是容易丢失数据中包含的信息。所以凡是正态分布或可通过数据转换成正态分布者尽量不用这些方法。Hotelling检验:用于计量资料、正态分布、两组间多项指标的综合差异显著性检验。以下主要介绍了四类检验方法T检验U检验方差检验非参数检验T检验T检验,亦称studentt检验(Student'stt

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。