欢迎来到天天文库
浏览记录
ID:38542777
大小:202.50 KB
页数:14页
时间:2019-06-14
《1.3.1 进位制》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.3算法案例第一课时知识探究(一):进位制的概念思考1:进位制是为了计数和运算方便而约定的记数系统,如逢十进一,就是十进制;每七天为一周,就是七进制;每十二个月为一年,就是十二进制,每六十秒为一分钟,每六十分钟为一个小时,就是六十进制;等等.一般地,“满k进一”就是k进制,其中k称为k进制的基数.那么k是一个什么范围内的数?思考2:十进制使用0~9十个数字,那么二进制、五进制、七进制分别使用哪些数字?思考3:在十进制中10表示十,在二进制中10表示2.一般地,若k是一个大于1的整数,则以k为基数的k进制数可以表示为一串数字连写在一起的形式:anan-1…a1a0(k).其
2、中各个数位上的数字an,an-1,…,a1,a0的取值范围如何?思考4:十进制数4528表示的数可以写成4×103+5×102+2×101+8×100,依此类比,二进制数110011(2),八进制数7342(8)分别可以写成什么式子?110011(2)=1×25+1×24+0×23+0×22+1×21+1×207342(8)=7×83+3×82+4×81+2×80.思考5:一般地,如何将k进制数anan-1…a1a0(k)写成各数位上的数字与基数k的幂的乘积之和的形式?思考6:在二进制中,0+0,0+1,1+0,1+1的值分别是多少?知识探究(二):k进制化十进制的算法思考
3、1:二进制数110011(2)化为十进制数是什么数?110011(2)=1×25+1×24+0×23+0×22+1×21+1×20=32+16+2+1=51.思考2:二进制数右数第i位数字ai化为十进制数是什么数?例1将下列各进制数化为十进制数.(1)10303(4);(2)1234(5).理论迁移10303(4)=1×44+3×42+3×40=307.1234(5)=1×53+2×52+3×51+4×50=194.知识探究(三):除k取余法思考1:二进制数101101(2)化为十进制数是什么数?十进制数89化为二进制数是什么数?101101(2)=25+23+22+1=4
4、5.89=2×(2×(2×(2×(2×2+1)+1)+0)+0)+1=1×26+0×25+1×24+1×23+0×22+0×21+1×20=1011001(2).思考2:上述化十进制数为二进制数的算法叫做除2取余法,转化过程有些复杂,观察下面的算式你有什么发现吗?21222502112222442891001101余数思考3:上述方法也可以推广为把十进制数化为k进制数的算法,称为除k取余法,那么十进制数191化为五进制数是什么数?0515753851911321余数191=1231(5)理论迁移例2将十进制数458分别转化为四进制数和六进制数.041474284114445
5、822031余数06261267664582402余数458=13022(4)=2042(6)例3将五进制数30241(5)转化为七进制数.30241(5)=3×54+2×52+4×5+1=1946.0757397278719460545余数30241(5)=5450(7)例4已知10b1(2)=a02(3),求数字a,b的值.所以2b+9=9a+2,即9a-2b=7.10b1(2)=1×23+b×2+1=2b+9.a02(3)=a×32+2=9a+2.故a=1,b=1.小结作业1.利用除k取余法,可以把任何一个十进制数化为k进制数,并且操作简单、实用.2.通过k进制数与十
6、进制数的转化,我们也可以将一个k进制数转化为另一个不同基数的k进制数.
此文档下载收益归作者所有