欢迎来到天天文库
浏览记录
ID:38538141
大小:76.00 KB
页数:4页
时间:2019-06-14
《8.3实际问题与二元一次方程组(3)教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、8.3实际问题与二元一次方程组(3)教案武鸣区仙湖镇中心学校滕梅兰学习目标1.掌握利用二元一次方程组解决问题的方法,培养学生从图表获取信息的能力。2.通过对“成本与产出问题”的学习和探究,体会建立数学模型的思想,渗透数形结合思想。3.通过对实际问题的研究,进一步感受设间接未知数迂回解决问题的策略。4.体会学习数学知识的价值,提高探究数学知识的兴趣。教学重点:1、懂得用方程组解决实际问题的过程;2、培养学生的数学应用能力。教学难点:分析、理解题意,把实际问题转化为数学问题,列出二元一次方程组。教学过程 活动1【导入】创设情景,引出新课复习提问:列方程解应用题的步骤是什么?学生回答:审
2、题、设未知数、列方程、解方程、检验并作答。活动2【讲授】深化问题,探究讨论探究3长青化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),这两次运输共支出公路运费15000元,铁路运费97200元.这批产品的销售款比原料费与运输费的和多多少元?一、自学例题,思考以下问题1、1.5元/(t·km)、1.2元/(t·km)表示什么意思?2、若按此计算,运5吨货物走4千米需要支付多少运费?3、运费和哪些量有关?如何表示?(运费=单价*重量*路程)4、销售款
3、、原料费、运输费分别与哪些量有关?怎样表示?销售款=产品单价×产品数量原料费=原料单价×原料数量运费=数量×单价×路程公路运费=原料的运费+产品的运费铁路运费=原料的运费+产品的运费二、合作交流,并填写课本101页表格列表法解:设制成xt产品,购买原料yt 产品x吨原料y吨合计公路运费(元) 铁路运费(元) 价值(元) 三、小组汇报展示设制成xt产品,购买原料yt四、师生点评本题的解法二------图例法解:设制成xt产品,购买原料yt.综合分析法解:设制成xt产品,购买原料yt.销售款为:8000X300=2400000(元)原料费为:1000X400=400000(元
4、)运输费为:15000+97200=112200(元)所以销售款比原料费与运输费的和多:2400000-(400000+112200)=1887800(元)答:销售款比原料费与运输费的和多1887800元。归纳总结(1)在什么情况下间接设未知数?当直接设未知数无法列出方程时,考虑间接设未知数.(2)如何解决信息量较大的实际问题?可以借助表格或者图例解决问题(3)解决实际问题的基本过程实际问题设未知数、列方程(组)数学问题二元一次方程组解方程(组)数学问题的解二元一次方程组的解检验实际问题的答案学以致用从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时行3km,平路每小时行4km
5、,下坡每小时行5km,那么从甲地到乙地需行54min,从乙地到甲地需42min,从甲地到乙地全程是多少?图例法:解:设甲到乙上坡路长为x千米,平路长为y千米甲乙4km/h3km/h54min乙4km/h5km/h42min甲列表法:解:设甲到乙上坡路长为x千米,平路长为y千米 上坡平路下坡合计甲到乙时间 乙到甲时间 反思提升我最大的收获:1.理解了运费单价:元/(吨·千米)2.学会了如何从题干中获取信息,找到等量关系3.掌握了间接设未知数迂回解决问题的方法
此文档下载收益归作者所有