欢迎来到天天文库
浏览记录
ID:3848707
大小:570.50 KB
页数:72页
时间:2017-11-24
《初中数学课程标准解读》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、初中数学课程标准解读一、课程改革的背景二、课程的基本理念三、课程设置一、课程改革的背景两个基础:基础知识,基本技能重视“双基”的中国数学教育课程改革的背景三大能力:运算能力、空间想象能力、逻辑推理能力五个教学环节:复习——导入——讲授——巩固——作业影响数学教育的文化因素重视现世功业的儒家文化“苦读+科举”的考试文化回避“原始问题”的考据文化课程改革的背景考据文化成为中国现代数学教学的核心思想.儒家文化将创新性的数学思维方式进行过滤,数学=逻辑数学缺少创造思考数学变化数学的应用越来越广泛计算机已经深刻地改变了数学世界数学是一个动态的过程数学内部各分支间相互渗透以
2、及数学与其他科学相互渗透数学的研究方法发生了变化课程改革的背景1、教材内容的差异西方:重视现代数学,深入浅出;中国:偏于传统数学,由浅入深数学教育的中西比较课程改革的背景2、教材编写的差异西方:实际问题—数学概念—实际问题(以课题求解为主线):中国:实际问题—数学概念—新的数学概念(按知识体系组织教材)3、教学方法的差异西方:群体合作型,动手动脑型;中国:独立完成型,大脑思维型课程改革的背景数学教学要面对“原始问题”,学习从疑问开始,创新从“原始问题”开始让学生“从现实中学数学、做数学”。“用大众数学的思想改造传统的数学教育理论与实践体系”二、课程的基本理念1.
3、人人学有价值的数学。2.人人都获得必需的数学。3.不同的人在数学上得到不同的发展。课程基本理念(1)什么是有价值的数学?.生活中的数学。.有趣的数学。.有利于学生发展的数学。.在有限的时间内能学好的数学。课程基本理念(1)必需的数学包括什么?对数学价值的基本认识。发展和解决现实数学问题的意识和能力。运用数学语言读、写、讨论和交流的本领。数学的基本思想和方法。课程基本理念(1)不同的人在数学上得到不同的发展是什么意思?面向全体,必须适应每位学生的发展需要。人的发展不可能整齐划一,必须承认差异,尊重差异。课程基本理念(1)1.数学学习是经历数学活动的过程。2.动手实
4、践、自主探索、合作交流是主要的学习方式。3.学生的数学学习活动是生动活泼的、主动的、富有个性的。课程基本理念(2)数学学习数学教学要建立在学生已有的知识和经验的基础上。课程基本理念(3)数学教学教师的主要任务是激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助学生成为学习的主人。教师的角色主要是教学活动的组织者、引导者与合作者。评价的目的是为了激励学生的学习和改进教师的教学,帮助学生认识自我、建立自信。建立评价目标多元、方法多样和注重过程的评价体系。课程基本理念(4)评价把现代信息技术作为学生学习数学和解决问题的强有力的工具。现代信息技术的应用应致力于
5、改变学生的学习方式,使学生乐意并有更多的精力投入现实的、探索性的数学活动中去。课程基本理念(5)现代信息技术计算机、多媒体和网络等既是一个人理解世界的钥匙,也是人在信息社会中得以生存的必要条件。三、课程设置课程设置的理念趋于统一化,这一趋势的价值取向表现为“人本化”与“实用化”的统一,课程设置人们对课程的认识也由“教材就是学生的全部世界”转变为“让全部世界成为学生的教材”课程总体目标1:所获得的数学知识应为学生的生存与终身发展奠定坚实的基础。2:不再强调向学生提供系统的数学知识结构,而是向学生提供具有现实背景的数学。3:体会数学与自然及人类社会的密切联系,了解数
6、学的价值,4:培养创新精神和实践能力,在情感态度和一般能力方面得到充分发展。课程设置华东师大版数学教材的编写理念教学目标:从以获取数学知识、技能和能力为首要目标转变为首先关注每一个学生的情感、态度、价值观和一般能力的发展。呈现方式:从“定义、公理——定理、公式——例题——习题”的形式转变为以“问题情境——建立模型——解释、应用与拓展”的基本模式展开内容。学习方式:由单纯的记忆、模仿和训练转变为自主探索、合作交流与实践创新。评价方式:由单纯的考查学生的学习结果转变为关注学生学习过程中的变化与发展。课程设置内容的引入:从实际情景引入数学知识内容的呈现:创设自主探索学
7、习情景和机会内容的编写:把握课程标准,同时又具有弹性内容的叙述:将背景材料与数学内容融为一体体系结构课程设置每章开始设置导图与导入语栏目多样,如“回忆”“思考”“概括”“做一做”“读一读”“想一想”等以及信息收集、调查研究等活动栏穿插学生阅读材料编制不同水平的练习题编写体例课程设置数与代数第1册有理数,整式的加减第2册一元一次方程,二元一次方程组第3册一元一次不等式,整式的乘法第4册数的开方,函数及其图象第5册分式,一元二次方程第6册二次函数主要内容数、式数量关系(方程、不等式)变量关系(函数)通过实际情景,呈现知识内容,使学生理解数与代数的意义.数与代数强调数
8、与代数是刻画现实世界的数
此文档下载收益归作者所有