欢迎来到天天文库
浏览记录
ID:38423511
大小:1.28 MB
页数:17页
时间:2019-06-12
《第十二章 全等三角形 备课》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、12.1全等三角形教学目标:1了解全等形及全等三角形的的概念;2理解全等三角形的性质3在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉,重点:探究全等三角形的性质难点:掌握两个全等三角形的对应边,对应角教学过程:一、全等三角形观察下列图案,指出这些图案中形状与大小相同的图形问题:你还能举出生活中一些实际例子吗?这些形状、大小相同的图形放在一起能够完全重合。能够完全重合的两个图形叫做全等形能够完全重合的两个三角形叫做全等三角形思考:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前
2、后的图形全等。“全等”用表示,读作“全等于”两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如全等时,点A和点D,点B和点E,点C和点F是对应顶点,记作把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角二、全等三角形的性质思考:如上图,13.1-1,对应边有什么关系?对应角呢?全等三角形性质:全等三角形的对应边相等;全等三角形的对应角相等。三、练习:(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角(2)将沿直线BC平移,得到,说出你得到的结论,说
3、明理由?(3)如图,AB与AC,AD与AE是对应边,已知:,求的大小。四、小结:通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素.五、布置作业:教科书第33页习题第1、2、3题12.2三角形全等的判定(1)教学目标1.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.2.掌握三角形全等的“边边边”条件,了解三角形的稳定性.3.通过对问题的共同探讨,培养学生的协作精神.教学难点三角形全等条件的探索过程.教学过程一、复习过程,引入新知多媒体显示,带领学生复习全等三角
4、形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.二、创设情境,提出问题根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳.三、建立模型,探索发现探究1,先任意画一个△ABC,再画一个△A'B'C',使△ABC与△A'B'C',满足上述条件中的一个或两个.你画出的△A'B'C'与△ABC一定全等吗?让学
5、生按照下面给出的条件作出三角形.(1)三角形的两个角分别是30°、50°.(2)三角形的两条边分别是4cm,6cm.(3)三角形的一个角为30°,—条边为3cm.再通过画一画,剪一剪,比一比的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.探究2,先任意画一个△ABC,再画一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?让学生充分交流后,在教师的引导下作出△A'B'C',并通过比较得出结论:三边对应相等的两个三角形全等.四、应用新知,
6、体验成功例l如下图△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD.让学生独立思考后口头表达理由,由教师板演推理过程.例2如图是用圆规和直尺画已知角的平分线的示意图,作法如下:①以A为圆心画弧,分别交角的两边于点B和点C;②分别以点B、C为圆心,相同长度为半径画两条弧,两弧交于点D;③画射线AD.AD就是∠BAC的平分线.五、巩固练习教科书第37页练习.六、反思小结回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想,掌握数学规律.七、布置作业教科书第43页习题第1、2题.11.2三角
7、形全等的判定(2)教学目标1.经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力.2.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.3.通过对问题的共同探讨,培养学生的协作精神.教学难点指导学生分析问题,寻找判定三角形全等的条件.教学重点应用“边角边”证明两个三角形全等,进而得出线段或角相等.教学过程一、创设情境,引入课题探究3:已知任意△ABC,画△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A.教帅点拨,学生边学边画图,再让学生把画好的△A'B'C',剪下放在△ABC上,观察
8、这两个三角形是否全等.二、交流对话,探求新知根据前面的操作,鼓励学生用自己的语言来总结规律:两边和它们的夹角对应相等的两个三角形全等.(SAS)补充强调:角必须是两条相等的对应边的夹角,边必须是夹相等角的两
此文档下载收益归作者所有