欢迎来到天天文库
浏览记录
ID:38419763
大小:1.13 MB
页数:20页
时间:2019-06-12
《概率论历年试题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、20006-20007秋季学期《概率论与数理统计》期末试卷一、填空题(每题3分,共15分)1.设A,B相互独立,且,则__________.2.已知,且,则__________.3.设X与Y相互独立,且,,,则___4.设是取自总体的样本,则统计量服从__________分布.5.设,且,则__________.二、选择题(每题3分,共15分)1.一盒产品中有只正品,只次品,有放回地任取两次,第二次取到正品的概率为【】(A);(B);(C);(D).2.设随机变量X的概率密度为则方差D(X)=【】(A)2;(B
2、);(C)3;(D).3.设、为两个互不相容的随机事件,且,则下列选项必然正确的是【】;;;.4.设是某个连续型随机变量的概率密度函数,则的取值范围是【】;;;.5.设,,其中、为常数,且,则【】;;;.三、(本题满分8分)甲乙两人独立地对同一目标射击一次,其命中率分别为0.5和0.4,现已知目标被命中,求它是乙命中的概率.四、(本题满分12分)设随机变量X的密度函数为,求:(1)常数A;(2);(3)分布函数.第20页共20页五、(本题满分10分)设随机变量X的概率密度为求的概率密度.六、(本题满分10分)将
3、一枚硬币连掷三次,X表示三次中出现正面的次数,Y表示三次中出现正面次数与出现反面次数之差的绝对值,求:(1)(X,Y)的联合概率分布;(2).七、(本题满分10分)二维随机变量(X,Y)的概率密度为求:(1)系数A;(2)X,Y的边缘密度函数;(3)问X,Y是否独立。第20页共20页八、(本题满分10分)设总体X的密度函数为其中未知参数,为取自总体X的简单随机样本,求参数的矩估计量和极大似然估计量.九、(本题满分10分)设总体,其中且与都未知,,.现从总体中抽取容量的样本观测值,算出,,试在置信水平下,求的置信
4、区间.(已知:,,,).第20页共20页20007-20008第一学期《概率论与数理统计》期末试卷一.选择题(将正确的答案填在括号内,每小题4分,共20分)1.检查产品时,从一批产品中任取3件样品进行检查,则可能的结果是:未发现次品,发现一件次品,发现两件次品,发现3件次品。设事件表示“发现件次品”。用表示事件“发现1件或2件次品”,下面表示真正确的是()(A);(B);(C);(D).2.设事件与互不相容,且,,则下面结论正确的是()(A)与互不相容;(B);(C);(D).3.设随机变量,,且与相互独立,则
5、()(A);(B);(C);(D).4.设总体,是未知参数,是来自总体的一个样本,则下列结论正确的是()(A);(B);(C);(D)5.设总体,是来自总体的一个样本,则的无偏估计量是()(A);(B);(C);(D).二.填空(将答案填在空格处,每小题4分,共20分)1.已知两个事件满足条件,且,则_________.2.3个人独立破译一份密码,他们能单独译出的概率分别为,则此密码被破译出的概率是.3.设随机变量的密度函数为,用表示对的3次独立重复观察中事件出现的次数,则.4.设两个随机变量和相互独立,且同分
6、布:,,则.5.设随机变量的分布函数为:,则.第20页共20页三.计算1.(8分)盒中放有10个乒乓球,其中有8个是新的。第一次比赛从中任取2个来用,比赛后仍放回盒中。第二次比赛时再从盒中取2个,求第二次取出的球都是新球的概率。2.(6分)设随机变量和独立同分布,且的分布律为:求的分布律。3.(12分)设随机变量的密度函数为:(1)试确定常数C;(2)求;(3)求的密度函数。第20页共20页4.(20分)设二维连续型随机变量的联合概率密度为:(1)求随机变量和的边缘概率密度;(2)求和;(3)和是否独立?求和的
7、相关系数,并说明和是否相关?(4)求。5.(6分)设总体的分布律为,是来自总体的一个样本。求参数的极大似然估计。第20页共20页6.(8分)食品厂用自动装罐机装罐头食品,每罐的标准重量为500g。每隔一定的时间,需要检验机器的工作情况。现抽得10罐,测得其重量(单位:g)的平均值为,样本方差。假定罐头的重量,试问机器的工作是否正常(显著性水平)?(,,)20008-2009第一学期《概率论与数理统计》期末试卷一、填空题(每题3分,共15分)1、已知随机变量服从参数为2的泊松(Poisson)分布,且随机变量,则
8、____________.2、设、是随机事件,,,则3、设二维随机变量的分布列为12312若与相互独立,则的值分别为。4、设,则____5、设是取自总体的样本,则统计量服从__________分布.二、选择题(每题3分,共15分)1.一盒产品中有只正品,只次品,有放回地任取两次,第二次取到正品的概率为【】(A);(B);(C);(D).2、设事件与互不相容,且,,则下面结论正确的是【】
此文档下载收益归作者所有