结构基于振动损伤识别的发展概况

结构基于振动损伤识别的发展概况

ID:38193109

大小:343.93 KB

页数:4页

时间:2019-05-24

结构基于振动损伤识别的发展概况_第1页
结构基于振动损伤识别的发展概况_第2页
结构基于振动损伤识别的发展概况_第3页
结构基于振动损伤识别的发展概况_第4页
资源描述:

《结构基于振动损伤识别的发展概况》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第17卷增刊振动工程学报Vol.17No.S2004年8月JournalofVibrationEngineeringAug.2004结构基于振动损伤识别的发展概况陈学前陈大林杜强冯加权(中国工程物理研究院结构力学研究所绵阳,621900)摘要对目前关于结构基于振动损伤识别的基本方法和最新的研究进展进行了回顾,重点介绍了利用结构振动固有频率、位移振型、曲率模态振型、应变模态和神经网络法作了相关的讨论和评述。最后对这一研究领域的未来研究方向进行了展望。关键词:结构振动;损伤识别;曲率模态振型;应变模态中图分类号:0327

2、随着科技的进步,现代工业的发展及未来人类构位移矢量。的需求,现代空间结构正在向着大型化、复杂化方向其特征方程为发展。然而这些结构在一定环境条件下会出现损伤,[K引侣}一Ojz[M](9,}=0(2)损伤将改变结构的强度和刚度从而引发更大的结构由式(1)一(2)可看出,结构固有频率(O;和振型损伤积累,这将导致结构的突发性失效,从而使结构向量恤),(i=1,2,---,n)均是结构质量矩阵〔M〕和的安全受到威胁。因此结构损伤识别成为国内外学刚度矩阵[K」的函数。损伤使结构质量和刚度减小,者关注的焦点,特别是利用结构的振

3、动响应和系统一般来说,刚度的损伤更厉害,所以一般情况下,当动态特性参数进行结构损伤诊断,近几十年来成为损伤出现后,结构固有频率降低,阻尼升高。因此,可国内外研究的热点。其基本思想是:损伤会引起结构以通过比较结构损伤发生前后特征频率的变化来识中物理参数(质量、刚度等)的改变,结构的模态参别结构损伤。此方法的优点是概念明确,在工程结构数(模态频率、模态振型、模态阻尼等)随之发生改损伤的实际识别中简单易行,但也存在较大局限性,变,根据此改变量即可确定损伤的位置与程度。按不主要表现在以下几点:同的技术水平,工程结构的损伤确定

4、和质量评估可(1)固有频率对结构的局部损伤不是很敏感,往分为以下四个层次川:①预估结构是否发生损伤;②往结构已经发生损伤,但其固有频率变化很小。确定损伤位置;③判断损伤程度;④结构发生损伤后(2)固有频率等模态参数反映结构整体性能,对的寿命预估。基于振动的损伤识别可选用的特征指桥梁局部微观的结构损伤反映不是很合适。即固有标有;结构的固有频率、结构位移模态振型、结构曲频率的变化只能反映损伤的有无,不能识别损伤的率模态振型、结构应变模态、结构位移(速度、加速位置与程度。度)频率响应函数、结构模态应变能以及基于神经(3)在

5、某些情况下,损伤后结构二阶或高阶的固网络的结构损伤识别等。本文将对结构基于振动损有频率不是降低而是升高,这样固有频率无法给出伤识别的几种方法进行总结。一个稳定的指标,而阻尼比的数值在现场实验中往往难以精确确定Cs71结构基于振动损伤识别的方法1.2基于位移振型的损伤识别〔6-8j1.1基于固有频率的损伤识别〔2-51相对频率而言,模态振型的变化对损伤较为敏感,而且用此方法可方便地确定损伤的位置。可以用无阻尼离散系统的自由振动动力学控制方程为关于振型的特征量模态置信因子MAC、模态比例因子MSF、坐标模态置信因子COM

6、AC来表征结构损[M]{x}+[K]{x}=0(1)伤前后的模态相关性。式中[M],[K〕是结构的质量、刚度矩阵,{x}为结收稿日期.2004-04-20振动工程学报第17卷模态置信因子(MAC)式(9)表明:结构的局部裂纹或损伤必然会导致结构MAC;=偏CAI(偏PHX味T,A)(3)局部EI(x)的降低,从而使得损伤处的曲率数值增式中4PA,9tH分别为结构在损伤和非损伤状态下的大,引起曲率模态振型数值发生突变。第i阶振型,MAC表示振型相关图中最小二乘偏差在结构有限元离散模型的振动模态分析中,若的度量。已计算得

7、到等间距有限元离散单元节点处的位移模模态比例因子(MSF)态振型,则结构的离散曲率模态振型可通过中央差MSF;=偏CAI呱9}H(4)分格式近似求出表示振型相关图的最佳直线的斜率。式(3)^}(4)是P,(k-1)一2p,k土9pck+i>、姚=—dx2对损伤前后同阶模态相关性的分析,当模态对应关(10)系不知道时,应用坐标模态因子对其进行分析。9}c;一,)一2(p;十T.ck+1>s2坐标模态置信因子(COMAC)式中T,*为第i阶位移振型幅值;k为计算点;8为相(习}9'kiHT,viA})’邻计算点的距离。C

8、OMAC,二-弋兴一-(5)对于实际工程结构,结构的实验曲率模态振型(E‘牛1`Yki,习雀-1喊,)可利用实验模态分析技术辨识出结构的位移模态振以上三个参数值范围均是0-1,当趋近0时,说型,并通过式(to)差分近似求出。明模态不相关,即结构有损伤存在;当趋近1时,模可以由曲率模态振型来定义的结构k点损伤的态相关性好,即结构中无损伤。无量纲化

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。