欢迎来到天天文库
浏览记录
ID:38149551
大小:71.50 KB
页数:5页
时间:2019-05-30
《吴锡贵 数学 《根与系数的关系》教学设计方案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、叙述式教学设计方案模板根与系数的关系设计者(吴锡贵、岩口复兴学校)一、概述·华师大版九年级上期数学·华师大版版九年级上23.3实践探索第三课时,准备一课时完成·一元二次方程根与系数的关系和简单应用。一元二次方程根与系数的关系是在学习了一元二次方程的解法和根的判别式之后引入的。·它深化了两根与系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,是方程理论的重要组成部分二、教学目标分析(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.(二)能力训练点
2、:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.三、学习者特征分析自主探究的学习方式,为学生提供了更广阔的探索空间;关注情感、态度与价值观的培养,使每个学生的个性得到了张扬……但实行义务教育后,初中教育对象由选拔择优扩大为全部小学毕业生,这不仅使学生数量增加,更主要的是学生之间差异的扩大,特别是在数学学科上的差距,导致进入初中以后数学学习困难
3、生的增多。四、教学策略选择与设计本课是一节公式定理的新知课第一课时,曾在旧版的教材中占据很重要的位置,不但在中考中体现,延伸到高中的数学教学也有广泛的应用.本册教材又将曾一度删去的内容恢复,可见根与系数关系的重要.它为进一步解决一元二次方程、二次函数以及相关的数学问题提供一些新的思路.但本课只需要让学生体会公式基本内容,在头脑中形成积极印象很关键.所以从绝大多数同学掌握的知识程度出发,针对本班学生的特点,本课在(a≠0,b2–4ac≥0)的前提条件下设计,所有的一元二次方程均有解.五、教学资源与工具设计电脑、实物投影仪六、教学过程(一)明确目
4、标5叙述式教学设计方案模板一元二次方程x2-5x+6=0的两个根是x1=2,x2=3,可以发现x1+x2=5恰是方程一次项系数-5的相反数,x1x2=6恰是方程的常数项.其它的一元二次方程的两根也有这样的规律吗?这就是本节课所研究的问题,利用一元二次方程的一般式和求根公式去推导两根和及两根积与方程系数的关系——一元二次方程根与系数的关系.(二)整体感知一元二次方程的求根公式是由系数表达的,研究一元二次方程根与系数的关系是指一元二次方程的两根的和,两根的积与系数的关系.它是以一元二次方程的求根公式为基础.学了这部分内容,在处理有关一元二次方程的
5、问题时,就会多一些思想和方法,同时,也为今后进一步学习方程理论打下基础.本节先由发现数字系数的一元二次方程的两根和与两根积与方程系数的关系,到引导学生去推导论证一元二次方程两根和与两根积与系数的关系及其应用.向学生渗透认识事物的规律是由特殊到一般,再由一般到特殊,培养学生勇于探索、积极思维的精神.(三)重点、难点的学习及目标完成过程1.复习提问(1)写出一元二次方程的一般式和求根公式.(2)解方程①x2-5x+6=0,②2x2+x-3=0.观察、思考两根和、两根积与系数的关系.在教师的引导和点拨下,由学生得出结论,教师提问:所有的一元二次方程
6、的两个根都有这样的规律吗?2.推导一元二次方程两根和与两根积和系数的关系.设x1、x2是方程ax2+bx+c=0(a≠0)的两个根.以上一名学生在板书,其它学生在练习本上推导.由此得出,一元二次方程的根与系数的关系.(一元二次方程两根和与两根积与系数的关系)结论1.如果ax2+bx+c=0(a≠0)的两个根是x1,x2,那么x1我们就可把它写成x2+px+q=0.结论2.如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1·x2=q.结论1具有一般形式,结论2有时给研究问题带来方便.5叙述式教学设计方案模板练习1.(口答
7、)下列方程中,两根的和与两根的积各是多少?(1)x2-2x+1=0;(2)x2-9x+10=0;(3)2x2-9x+5=0;(4)4x2-7x+1=0;(5)2x2-5x=0;(6)x2-1=0此组练习的目的是更加熟练掌握根与系数的关系.3.一元二次方程根与系数关系的应用.(1)验根.(口答)判定下列各方程后面的两个数是不是它的两个根.验根是一元二次方程根与系数关系的简单应用,应用时要注意三个问题:(1)要先把一元二次方程化成标准型,(2)不要漏除二次项(2)已知方程一根,求另一根.例:已知方程5x2+kx-6=0的根是2,求它的另一根及k的
8、值.此题的解法是依据一元二次方程根与系数的关系,设未知数列方程达到目的,还可以向学生展现下列方法,并且作比较.方法(二)∵ 2是方程5x2+kx-6=0的根,∴ 5
此文档下载收益归作者所有