江苏省2019届高考数学专题二立体几何2.1小题考法—立体几何中的计算讲义

江苏省2019届高考数学专题二立体几何2.1小题考法—立体几何中的计算讲义

ID:38107862

大小:668.68 KB

页数:15页

时间:2019-06-06

江苏省2019届高考数学专题二立体几何2.1小题考法—立体几何中的计算讲义_第1页
江苏省2019届高考数学专题二立体几何2.1小题考法—立体几何中的计算讲义_第2页
江苏省2019届高考数学专题二立体几何2.1小题考法—立体几何中的计算讲义_第3页
江苏省2019届高考数学专题二立体几何2.1小题考法—立体几何中的计算讲义_第4页
江苏省2019届高考数学专题二立体几何2.1小题考法—立体几何中的计算讲义_第5页
资源描述:

《江苏省2019届高考数学专题二立体几何2.1小题考法—立体几何中的计算讲义》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题二立体几何[江苏卷5年考情分析]小题考情分析大题考情分析常考点空间几何体的表面积与体积(5年3考)  本专题在高考大题中的考查非常稳定,主要是线线、线面、面面的平行与垂直关系的证明,一般第(1)问是线面平行的证明,第(2)问是线线垂直或面面垂直的证明,考查形式单一,难度一般.偶考点简单几何体与球的切接问题第一讲小题考法——立体几何中的计算考点(一)空间几何体的表面积与体积主要考查柱体、锥体以及简单组合体的表面积与体积.[题组练透]1.现有一个底面半径为3cm,母线长为5cm的圆锥状实心铁器,将其高温熔化

2、后铸成一个实心铁球(不计损耗),则该铁球的半径为________cm.解析:因为圆锥底面半径为3cm,母线长为5cm,所以圆锥的高为=4cm,其体积为π×32×4=12πcm3,设铁球的半径为r,则πr3=12π,所以该铁球的半径是cm.答案:2.(2018·苏锡常镇二模)已知直四棱柱底面是边长为2的菱形,侧面对角线的长为2,则该直四棱柱的侧面积为________.解析:由题意得,直四棱柱的侧棱长为=2,所以该直四棱柱的侧面积为S=cl=4×2×2=16.答案:163.(2018·江苏高考)如图所示,正方体

3、的棱长为2,以其所有面的中心为顶点的多面体的体积为________.解析:由题意知所给的几何体是棱长均为的八面体,它是由两个有公共底面的正四棱锥组合而成的,正四棱锥的高为1,所以这个八面体的体积为2V正四棱锥=2××()2×1=.答案:4.(2018·南通、泰州一调)如图,铜质六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的几何体.已知正六棱柱的底面边长、高都为4cm,圆柱的底面积为9cm2.若将该螺帽熔化后铸成一个高为6cm的正三棱柱零件,则该正三棱柱的底面边长为________cm(不计损耗).解析:由

4、题意知,熔化前后的体积相等,熔化前的体积为6××42×4-9×4=60cm3,设所求正三棱柱的底面边长为xcm,则有x2·6=60,解得x=2,所以所求边长为2cm.答案:25.设甲,乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2.若它们的侧面积相等且=,则的值是________.解析:设甲,乙两个圆柱的底面半径分别为r1,r2,高分别为h1,h2,则有2πr1h1=2πr2h2,即r1h1=r2h2,又=,∴=,∴=,则==.答案:[方法技巧]求几何体的表面积及体积的解题技巧(1)求几何体的表面

5、积及体积问题,可以多角度、多方位地考虑,熟记公式是关键所在.求三棱锥的体积时,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.(2)求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.考点(二)简单几何体与球的切接问题主要考查简单几何体与球切接时的表面积、体积的计算问题,以及将空间几何体的问题转化为平面几何图形的关系的能力.[题组练透]1.(2017·江苏高考)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O1O2的体

6、积为V1,球O的体积为V2,则的值是________.解析:设球O的半径为R,因为球O与圆柱O1O2的上、下底面及母线均相切,所以圆柱的底面半径为R、高为2R,所以==.答案:2.(2018·无锡期末)直三棱柱ABCA1B1C1中,已知AB⊥BC,AB=3,BC=4,BB1=5,若三棱柱的所有顶点都在同一球面上,则该球的表面积为________.解析:根据条件可知该直三棱柱的外接球就是以BA,BC,BB1为棱的长方体的外接球,设其半径为R,则2R==,得R=,故该球的表面积为S=4πR2=50π.答案:50

7、π3.已知矩形ABCD的顶点都在半径为2的球O的球面上,且AB=3,BC=,过点D作DE垂直于平面ABCD,交球O于点E,则棱锥EABCD的体积为________.解析:如图所示,BE过球心O,∴BE=4,BD==2,∴DE==2,∴VEABCD=×3××2=2.答案:24.(2018·全国卷Ⅲ改编)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥DABC体积的最大值为________.解析:由等边△ABC的面积为9,可得AB2=9,所以AB=6,所以等边△ABC

8、的外接圆的半径为r=AB=2.设球的半径为R,球心到等边△ABC的外接圆圆心的距离为d,则d===2.所以三棱锥DABC高的最大值为2+4=6,所以三棱锥DABC体积的最大值为×9×6=18.答案:18[方法技巧]简单几何体与球切接问题的解题技巧方法解读适合题型截面法解答时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作球内切多面体或旋转体构造直角三角形法首先确定球

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。