欢迎来到天天文库
浏览记录
ID:38043418
大小:194.50 KB
页数:3页
时间:2019-05-25
《吉林大学2008-2009高数BII试题答案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、吉林大学2008~2009学年第二学期《高等数学BⅡ》试卷参考答案(注:可根据实际情况对评分标准进行调整)一、单项选择题:题号123456答案CBADCD二、填空题1..2..3..4.32.5..6..三、按要求解答下列各题1.求椭球面的平行于平面的切平面方程.解:设,则………2分于是椭球面上过点的切平面的法线向量平面的法向量,且所以…………….4分又点在椭球面上,代入得切点为……………6分从而所求切平面方程为…………………………………8分2.设函数,其中具有二阶连续偏导数,求和.解:………………………………………………………4分……………………………………
2、…8分3.计算二重积分其中是以,,为顶点的三角形闭区域.(共6页第3页)解:…4分……………………….8分4.将展开成的幂级数,并求数项级数的和.解:……………..4分所以=………………..6分……………..……….8分5.计算曲面积分,其中是球面,是在点处的外向法线的方向角.解法1:直接利用高斯公式………………………………………4分………………………….………6分…………………………………………8分解法2:利用对面积的曲面积分的计算球面上任一点的外法线通过原点,故有….2分………………………..4分(共6页第3页)……………………………8分6.求幂级数的收敛
3、域,并求其和函数.解:,当时,发散,收敛域为………..4分和函数…………………………………….8分7.求微分方程的通解.解:特征方程为,…………………………..2分对应的齐次方程的通解为……………………………4分因为1不是特征根,设特解的形式为代入原方程得………………….6分所求通解为……………………8分8.(1)确定函数,使曲线积分与路径无关;(2)如果,计算此曲线积分.解:(1)………………………..2分解此一阶线性非齐次方程得………………………4分(2)………………………………………6分所求曲线积分………………………………….8分(共6页第3页)
此文档下载收益归作者所有