欢迎来到天天文库
浏览记录
ID:37999150
大小:231.05 KB
页数:4页
时间:2019-05-04
《2.2对数函数及其性质(1)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.2.2对数函数及其性质(一)教学目标(一)教学知识点1.对数函数的概念;2.对数函数的图象与性质.(二)能力训练要求1.理解对数函数的概念;2.掌握对数函数的图象、性质;3.培养学生数形结合的意识.(三)德育渗透目标1.认识事物之间的普遍联系与相互转化;2.用联系的观点看问题;3.了解对数函数在生产生活中的简单应用.教学重点对数函数的图象、性质.教学难点对数函数的图象与指数函数的关系.教学过程一、复习引入:1、指对数互化关系:2、的图象和性质.a>10<a<1图象性质(1)定义域:R(2)值域:(0,+∞)(3)过点(0,1),即x=0
2、时,y=1(4)在R上是增函数(4)在R上是减函数3、我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个数是分裂次数的函数,这个函数可以用指数函数=表示.现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞,那么,分裂次数就是要得到的细胞个数的函数.第4页共4页根据对数的定义,这个函数可以写成对数的形式就是.如果用表示自变量,表示函数,这个函数就是.引出新课--对数函数.二、新授内容:1.对数函数的定义:函数叫做对数函数,定义域为,值域为.例1.求下列函数的定义域:(1);
3、(2);(3).分析:此题主要利用对数函数的定义域(0,+∞)求解.解:(1)由>0得,∴函数的定义域是;(2)由得,∴函数的定义域是;(3)由9-得-3,∴函数的定义域是.2.对数函数的图象:通过列表、描点、连线作与的图象:思考:与的图象有什么关系?3.练习:教材第73页练习第1题.1.画出函数y=x及y=的图象,并且说明这两个函数的相同性质和不同性质.解:相同性质:两图象都位于y轴右方,都经过点(1,0),这说明两函数的定义域都是(0,+∞),且当x=1,y=0.不同性质:y=x的图象是上升的曲线,y=的图象是下降的曲线,这说明前者在(
4、0,+∞)上是增函数,后者在(0,+∞)上是减函数.第4页共4页4.对数函数的性质由对数函数的图象,观察得出对数函数的性质.a>10<a<1图象性质定义域:(0,+∞)值域:R过点(1,0),即当x=1时,y=0时时时时在(0,+∞)上是增函数在(0,+∞)上是减函数三、讲解范例:例2.比较下列各组数中两个值的大小:⑴;⑵;⑶.解:⑴考查对数函数,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是.⑵考查对数函数,因为它的底数0<0.3<1,所以它在(0,+∞)上是减函数,于是.小结1:两个同底数的对数比较大小的一般步骤:①确定所要考
5、查的对数函数;②根据对数底数判断对数函数增减性;③比较真数大小,然后利用对数函数的增减性判断两对数值的大小.⑶当时,在(0,+∞)上是增函数,于是;当时,在(0,+∞)上是减函数,于是.小结2:分类讨论的思想.对数函数的单调性取决于对数的底数是大于1还是小于1.而已知条件并未指明,因此需要对底数a进行讨论,体现了分类讨论的思想,要求学生逐步掌握.四、练习1。(P73、2)求下列函数的定义域:第4页共4页(1)y=(1-x)(2)y=(3)y=(5(6)解:(1)由1-x>0得x<1∴所求函数定义域为{x
6、x<1};(2)由x≠0,得x≠1,
7、又x>0∴所求函数定义域为{x
8、x>0且x≠1};(3)由∴所求函数定义域为{x
9、x<};(4)由∴x≥1∴所求函数定义域为{x
10、x≥1}.练习2、函数的图象恒过定点()3、已知函数的定义域与值域都是[0,1],求a的值。(因时间而定,选讲)五、课堂小结⑴对数函数定义、图象、性质;⑵对数的定义,指数式与对数式互换;⑶比较两个数的大小.六、课后作业:1.阅读教材第70~72页;2.《习案》P191~192面。第4页共4页
此文档下载收益归作者所有