欢迎来到天天文库
浏览记录
ID:37945036
大小:1.20 MB
页数:11页
时间:2019-06-03
《Interactive genetic algorithms with individual’s fuzzy fitness》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、ComputersinHumanBehavior27(2011)1482–1492ContentslistsavailableatScienceDirectComputersinHumanBehaviorjournalhomepage:www.elsevier.com/locate/comphumbehInteractivegeneticalgorithmswithindividual’sfuzzyfitnessDun-weiGong⇑,JieYuan,Xiao-yanSunSchoolofInformationandElectricalEngineering,ChinaUniv
2、ersityofMiningandTechnology,Xuzhou,ChinaarticleinfoabstractArticlehistory:InteractivegeneticalgorithmsareeffectivemethodstosolveanoptimizationproblemwithimplicitorAvailableonline30October2010fuzzyindices,andhavebeensuccessfullyappliedtomanyreal-worldoptimizationproblemsinrecentyears.Intradit
3、ionalinteractivegeneticalgorithms,manyresearchersadoptanaccuratenumbertoKeywords:expressanindividual’sfitnessassignedbyauser.ButitisdifficultforthisexpressiontoreasonablyreflectOptimizationauser’sfuzzyandgradualcognitivetoanindividual.WepresentaninteractivegeneticalgorithmwithanGeneticalgorithm
4、sindividual’sfuzzyfitnessinthispaper.Firstly,weadoptafuzzynumberdescribedwithaGaussianmem-Individual’sfitnessbershipfunctiontoexpressanindividual’sfitness.Then,inordertocomparedifferentindividuals,weFuzzynumbergenerateafitnessintervalbasedona-cutset,andobtaintheprobabilityofindividualdominanceby
5、Fashiondesignuseoftheprobabilityofintervaldominance.Finally,wedeterminethesuperiorindividualintournamentselectionwithsizetwobasedontheprobabilityofindividualdominance,andperformthesubsequentevolutions.Weapplytheproposedalgorithmtoafashionevolutionarydesignsystem,atypicaloptimi-zationproblemw
6、ithanimplicitindex,andcompareitwithtwointeractivegeneticalgorithms,i.e.,aninteractivegeneticalgorithmwithanindividual’saccuratefitnessandaninteractivegeneticalgorithmwithanindividual’sintervalfitness.Theexperimentalresultsshowthattheproposedalgorithmisadvan-tageousinalleviatinguserfatigueandlo
7、okingforuser’ssatisfactoryindividuals.Ó2010ElsevierLtd.Allrightsreserved.1.Introductionfitnessaremorelikelytobeselectedtogenerateindividualsinthenextgeneration.AnewgenerationofindividualsisgeneratedOptimizationproblemsareverycommoninreal-worldapplic
此文档下载收益归作者所有