《二次函数的性质》教案

《二次函数的性质》教案

ID:37786044

大小:55.00 KB

页数:3页

时间:2019-05-31

《二次函数的性质》教案_第1页
《二次函数的性质》教案_第2页
《二次函数的性质》教案_第3页
资源描述:

《《二次函数的性质》教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《二次函数的性质》教案教学目标1、掌握二次函数解析式的三种形式,并会选用不同的形式,用待定系数法求二次函数的解析式.2、能根据二次函数的解析式确定抛物线的开口方向,顶点坐标,和对称轴、最值和增减性.3、能根据二次函数的解析式画出函数的图像,并能从图像上观察出函数的一些性质.教学重、难点教学重点:二次函数的解析式和利用函数的图像观察性质教学难点:利用图像观察性质教学设计一、复习1、抛物线的顶点坐标是,对称轴是,在侧,即x_____0时,y随着x的增大而增大;在侧,即x_____0时,y随着x的增大而减小;当x=时,函数y最值是

2、____.2、抛物线的顶点坐标是,对称轴是,在侧,即x_____0时,y随着x的增大而增大;在侧,即x_____0时,y随着x的增大而减小;当x=时,函数y最值是____.二、例题讲解例、根据下列条件求二次函数的解析式:(1)函数图像经过点A(-3,0),B(1,0),C(0,-2)(2)函数图像的顶点坐标是(2,4)且经过点(0,1)(3)函数图像的对称轴是直线x=3,且图像经过点(1,0)和(5,0)说明:本题给出求抛物线解析式的三种解法,关键是看题目所给条件.一般来说:任意给定抛物线上的三个点的坐标,均可设一般式去求;

3、若给定顶点坐标(或对称轴或最值)及另一个点坐标,则可设顶点式较为简单;若给出抛物线与x轴的两个交点坐标,则用分解式较为快捷.例、已知函数y=x2-2x-3,(1)把它写成的形式;并说明它是由怎样的抛物线经过怎样平移得到的?(2)写出函数图象的对称轴、顶点坐标、开口方向、最值;(3)求出图象与坐标轴的交点坐标;(4)画出函数图象的草图;(5)设图像交x轴于A、B两点,交y轴于P点,求△APB的面积;(6)根据图象草图,说出x取哪些值时,①y=0;②y<0;③y>0.说明:(1)对于解决函数和几何的综合题时要充分利用图形,做到线

4、段和坐标的互相转化;(2)利用函数图像判定函数值何时为正,何时为负,同样也要充分利用图像,要使y<0;,其对应的图像应在x轴的下方,自变量x就有相应的取值范围.yxo例、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则:a0;b0;c0;0.说明:二次函数y=ax2+bx+c(a≠0)的图像与系数a、b、c、的关系:系数的符号图像特征a的符号a>0.抛物线开口向a<0抛物线开口向b的符号b>0.抛物线对称轴在y轴的侧b=0抛物线对称轴是轴b<0抛物线对称轴在y轴的侧c的符号c>0.抛物线与y轴交于C=0抛物线与y轴交

5、于c<0抛物线与y轴交于的符号>0.抛物线与x轴有个交点=0抛物线与x轴有个交点<0抛物线与x轴有个交点三、小结本节课你学到了什么?四、补充作业题:已知二次函数的图像如图所示,下列结论:x-11y⑴a+b+c﹤0⑵a-b+c﹥0⑶abc﹥0⑷b=2a其中正确的结论的个数是()A、1个B、2个C、3个D、4个

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。