欢迎来到天天文库
浏览记录
ID:37786044
大小:55.00 KB
页数:3页
时间:2019-05-31
《《二次函数的性质》教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《二次函数的性质》教案教学目标1、掌握二次函数解析式的三种形式,并会选用不同的形式,用待定系数法求二次函数的解析式.2、能根据二次函数的解析式确定抛物线的开口方向,顶点坐标,和对称轴、最值和增减性.3、能根据二次函数的解析式画出函数的图像,并能从图像上观察出函数的一些性质.教学重、难点教学重点:二次函数的解析式和利用函数的图像观察性质教学难点:利用图像观察性质教学设计一、复习1、抛物线的顶点坐标是,对称轴是,在侧,即x_____0时,y随着x的增大而增大;在侧,即x_____0时,y随着x的增大而减小;当x=时,函数y最值是
2、____.2、抛物线的顶点坐标是,对称轴是,在侧,即x_____0时,y随着x的增大而增大;在侧,即x_____0时,y随着x的增大而减小;当x=时,函数y最值是____.二、例题讲解例、根据下列条件求二次函数的解析式:(1)函数图像经过点A(-3,0),B(1,0),C(0,-2)(2)函数图像的顶点坐标是(2,4)且经过点(0,1)(3)函数图像的对称轴是直线x=3,且图像经过点(1,0)和(5,0)说明:本题给出求抛物线解析式的三种解法,关键是看题目所给条件.一般来说:任意给定抛物线上的三个点的坐标,均可设一般式去求;
3、若给定顶点坐标(或对称轴或最值)及另一个点坐标,则可设顶点式较为简单;若给出抛物线与x轴的两个交点坐标,则用分解式较为快捷.例、已知函数y=x2-2x-3,(1)把它写成的形式;并说明它是由怎样的抛物线经过怎样平移得到的?(2)写出函数图象的对称轴、顶点坐标、开口方向、最值;(3)求出图象与坐标轴的交点坐标;(4)画出函数图象的草图;(5)设图像交x轴于A、B两点,交y轴于P点,求△APB的面积;(6)根据图象草图,说出x取哪些值时,①y=0;②y<0;③y>0.说明:(1)对于解决函数和几何的综合题时要充分利用图形,做到线
4、段和坐标的互相转化;(2)利用函数图像判定函数值何时为正,何时为负,同样也要充分利用图像,要使y<0;,其对应的图像应在x轴的下方,自变量x就有相应的取值范围.yxo例、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则:a0;b0;c0;0.说明:二次函数y=ax2+bx+c(a≠0)的图像与系数a、b、c、的关系:系数的符号图像特征a的符号a>0.抛物线开口向a<0抛物线开口向b的符号b>0.抛物线对称轴在y轴的侧b=0抛物线对称轴是轴b<0抛物线对称轴在y轴的侧c的符号c>0.抛物线与y轴交于C=0抛物线与y轴交
5、于c<0抛物线与y轴交于的符号>0.抛物线与x轴有个交点=0抛物线与x轴有个交点<0抛物线与x轴有个交点三、小结本节课你学到了什么?四、补充作业题:已知二次函数的图像如图所示,下列结论:x-11y⑴a+b+c﹤0⑵a-b+c﹥0⑶abc﹥0⑷b=2a其中正确的结论的个数是()A、1个B、2个C、3个D、4个
此文档下载收益归作者所有