欢迎来到天天文库
浏览记录
ID:3775063
大小:567.50 KB
页数:12页
时间:2017-11-23
《载 ppt课件 人教 新课标 初中数学 九年级下 28.1锐角三角函数(1)课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、28.1锐角三角函数(1)问题为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?这个问题可以归结为,在Rt△ABC中,∠C=90°,∠A=30°,BC=35m,求ABABC分析:情境探究在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的水管?结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于ABC50m30mB'C'即在直角三角形中,当一个锐
2、角等于45°时,不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于如图,任意画一个Rt△ABC,使∠C=90°,∠A=45°,计算∠A的对边与斜边的比,你能得出什么结论?ABC综上可知,在一个Rt△ABC中,∠C=90°,当∠A=30°时,∠A的对边与斜边的比都等于,是一个固定值;当∠A=45°时,∠A的对边与斜边的比都等于,也是一个固定值.一般地,当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?结论问题这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比也是一个固定值.任意画Rt△AB
3、C和Rt△A'B'C',使得∠C=∠C'=90°,∠A=∠A'=α,那么与有什么关系.你能解释一下吗?探究ABCA'B'C'如图,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦(sine),记住sinA即例如,当∠A=30°时,我们有当∠A=45°时,我们有ABCcab对边斜边在图中∠A的对边记作a∠B的对边记作b∠C的对边记作c正弦函数例1如图,在Rt△ABC中,∠C=90°,求sinA和sinB的值.ABC34例题示范ABC135(1)(2)例2、如图,在△ABC中,AB=BC=5,sinA=4/5,求△ABC的面积。应
4、用新知1.在平面直角平面坐标系中,已知点A(3,0)和B(0,-4),则sin∠OAB等于____2.在RT△ABC中,∠C=900,AD是BC边上的中线,AC=2,BC=4,则sin∠DAC=_____.3.在RT△ABC中,则sin∠A=___.ACBABCDE3.已知在RT△ABC中,∠C=900,D是BC中点,DE⊥AB,垂足为E,sin∠BDE=AE=7,求DE的长.www.czsx.com.cn三角函数符号最早的使用1949年至今,由于受前苏联教材的影响,我国数学书籍中“cot”改为“ctg”,“tan”改为“tg”,其余四个符号均未变。这
5、就是为什么我国市场上流行的进口函数计算器上有“tan”而无“tg”按键的缘故。小资料sine(正弦)一词始于阿拉伯人雷基奥蒙坦。他是十五世纪西欧数学界的领导人物,他于1464年完成的著作《论各种三角形》,1533年开始发行,这是一本纯三角学的书,使三角学脱离天文学,独立成为一门数学分科。Cosine(余弦)及cotangent(余切)为英国人根日尔首先使用,最早在1620年伦敦出版的他所著的《炮兵测量学》中出现。Secant(正割)及tangent(正切)为丹麦数学家托马斯·劳克首创,最早见于他的《圆几何学》一书中。Cosecant(余割)一词为锐梯卡
6、斯所创。最早见于他1596年出版的《宫廷乐章》一书。1626年,阿尔贝特·格洛德最早推出简写的三角符号:“sin”,“tan”,“sec”.1675年,英国人奥屈特最早推出余下的简写三角符号:“cos”,“cot”,“csc”。便直到1748年,经过数学家欧拉的引用后,才逐渐通用起来。
此文档下载收益归作者所有