欢迎来到天天文库
浏览记录
ID:37672918
大小:225.50 KB
页数:4页
时间:2019-05-28
《专题1 第2讲 数形结合思想 Word版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二、数形结合(1)数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法.数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合.(2)数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图像来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程
2、来精确地阐明曲线的几何性质.2.数形结合的途径(1)通过坐标系“形题数解”借助于直角坐标系、复平面,可以将几何问题代数化.这一方法在解析几何中体现得相当充分(在高考中主要也是以解析几何作为知识载体来考查的).值得强调的是,“形题数解”时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大缩短代数推理).实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图像的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义.如等式(x-2)2+
3、(y-1)2=4,表示坐标平面内以(2,1)为圆心,2为半径的圆.(2)通过转化构造“数题形解”许多代数结构都有着相对应的几何意义,据此,可以将数与形进行巧妙地转化.例如,将a(a>0)与距离互化;将a2与面积互化,将a2+b2+ab=a2+b2-2
4、a
5、
6、b
7、cosθ(θ=60°或θ=120°)与余弦定理沟通;将a≥b≥c>0且b+c>a中的a、b、c与三角形的三边沟通;将有序实数对(或复数)和点沟通;将二元一次方程与直线、将二元二次方程与相应的圆锥曲线对应等等.这种代数结构向几何结构的转化常常表现为构造一个图形(平面的或立体的).另外,函数的图像也是实现数形转
8、化的有效工具之一,正是基于此,函数思想和数形结合思想经常相互渗透,演绎出解题捷径.[例1]若f(x)+1=,当x∈[0,1]时,f(x)=x,若在区间(-1,1]内g(x)=f(x)-mx-m有两个零点,则实数m的取值范围是( )A. B.C.D.[思维流程]利用数形结合求方程解应注意两点(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图像的准确性、全面性,否则会得到错解.(2)正确作出两个函数的图像是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合.1.函数f(x)满足f(
9、x+2)=f(x),且x∈[-1,1]时,f(x)=1-x2,函数g(x)=则函数h(x)=f(x)-g(x)在区间[-5,5]内零点的个数是()A.5B.7C.8D.10[例2] (1)使log2(-x)10、x-2a11、≥x+a-1对x∈R恒成立,则a的取值范围是________.[思维流程]利用数形结合解不等式应注意的问题解含参数的不等式时,由于涉及到参数,往往需要讨论,导致运算过程繁琐冗长.如果题设与几何图形有联系,那么利用数形结合的方法,问题将会顺利地得到解决.2.当x∈(1,2)时,不等式(x-1)12、213、c14、的最大值是( )A.1B.2C.D.[思维流程]利用数形结合求最值的方法步骤第一步:分析数理特征,确定目标问题的几何意义.一般从图形结构、图形的几何意义分析代数式是否具有几何意义.第二步:转化为几何问题.第三步:解决几何问题.第四步:回归代数问题.第五步:回顾反思.应用几何15、意义数形结合法解决问题需要熟悉常见的几何结构的代数形式,主要有:(1)比值——可考虑直线的斜率;(2)二元一次式——可考虑直线的截距;(3)根式分式——可考虑点到直线的距离;(4)根式——可考虑两点间的距离.3.对于任意x∈R,函数f(x)表示-x+3,x+,x2-4x+3中的较大者,则f(x)的最小值是( )A.2B.3C.8D.-14.当016、元方程)及
10、x-2a
11、≥x+a-1对x∈R恒成立,则a的取值范围是________.[思维流程]利用数形结合解不等式应注意的问题解含参数的不等式时,由于涉及到参数,往往需要讨论,导致运算过程繁琐冗长.如果题设与几何图形有联系,那么利用数形结合的方法,问题将会顺利地得到解决.2.当x∈(1,2)时,不等式(x-1)
12、213、c14、的最大值是( )A.1B.2C.D.[思维流程]利用数形结合求最值的方法步骤第一步:分析数理特征,确定目标问题的几何意义.一般从图形结构、图形的几何意义分析代数式是否具有几何意义.第二步:转化为几何问题.第三步:解决几何问题.第四步:回归代数问题.第五步:回顾反思.应用几何15、意义数形结合法解决问题需要熟悉常见的几何结构的代数形式,主要有:(1)比值——可考虑直线的斜率;(2)二元一次式——可考虑直线的截距;(3)根式分式——可考虑点到直线的距离;(4)根式——可考虑两点间的距离.3.对于任意x∈R,函数f(x)表示-x+3,x+,x2-4x+3中的较大者,则f(x)的最小值是( )A.2B.3C.8D.-14.当016、元方程)及
13、c
14、的最大值是( )A.1B.2C.D.[思维流程]利用数形结合求最值的方法步骤第一步:分析数理特征,确定目标问题的几何意义.一般从图形结构、图形的几何意义分析代数式是否具有几何意义.第二步:转化为几何问题.第三步:解决几何问题.第四步:回归代数问题.第五步:回顾反思.应用几何
15、意义数形结合法解决问题需要熟悉常见的几何结构的代数形式,主要有:(1)比值——可考虑直线的斜率;(2)二元一次式——可考虑直线的截距;(3)根式分式——可考虑点到直线的距离;(4)根式——可考虑两点间的距离.3.对于任意x∈R,函数f(x)表示-x+3,x+,x2-4x+3中的较大者,则f(x)的最小值是( )A.2B.3C.8D.-14.当016、元方程)及
16、元方程)及
此文档下载收益归作者所有