资源描述:
《Scaling Conditional Random Fields for Natural Language Processing》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、ScalingConditionalRandomFieldsforNaturalLanguageProcessingTrevorA.CohnSubmittedintotalfulfilmentoftherequirementsofthedegreeofDoctorofPhilosophyJanuary,2007DepartmentofComputerScienceandSoftwareEngineeringFacultyofEngineeringUniversityofMelbourneAbstractThisthesisdealswiththeuseofConditionalRandom
2、Fields(CRFs;Laffertyetal.(2001))forNaturalLanguageProcessing(NLP).CRFsareprobabilisticmodelsforsequencelabellingwhichareparticularlywellsuitedtoNLP.Theyhavemanycompellingadvan-tagesoverotherpopularmodelssuchasHiddenMarkovModelsandMaximumEntropyMarkovModels(Rabiner,1990;McCallumetal.,2001),andhaveb
3、eenappliedtoanum-berofNLPtaskswithconsiderablesuccess(e.g.,ShaandPereira(2003)andSmithetal.(2005)).Despitetheirapparentsuccess,CRFssufferfromtwomainfailings.Firstly,theyoftenover-fitthetrainingsample.Thisisaconsequenceoftheirconsiderableexpres-sivepower,andcanbelimitedbyaprioroverthemodelparameters
4、(ShaandPereira,2003;PengandMcCallum,2004).TheirsecondfailingisthatthestandardmethodsforCRFtrainingareoftenveryslow,sometimesrequiringweeksofprocessingtime.Thisefficiencyproblemislargelyignoredincurrentliterature,althoughinpractisethecostoftrainingpreventstheapplicationofCRFstomanynewmorecomplextask
5、s,andalsopreventstheuseofdenselyconnectedgraphs,whichwouldallowformuchricherfeaturesets.Thisthesisaddressestheissueoftrainingefficiency.Firstly,wedemonstratethattheasymptotictimecomplexityofstandardtrainingforalinearchainCRFisquadraticinthesizeofthelabelset,linearinthenumberoffeaturesandalmostquadr
6、aticinthesizeofthetrainingsample.Thecostofinferenceincyclicgraphs,suchaslatticestructuredDynamicCRFs(Suttonetal.,2004),isevengreater.ThecomplexityoftraininglimitstheapplicationofCRFstolargeandcomplextasks.Wecomparetheaccuracyofanumberofpopularapproximatetrainingtechniques,whichcangreatlyreducethe
7、trainingcost.However,formosttasksthissavingiscoupledwithasubstantiallossinaccuracy.Forthisreasonweproposetwonoveltrainingmethods,whichbothreducetheresourcerequirementsandimprovethescalabilityoftraining,suchthatCRFscanb