Scaling Conditional Random Fields for Natural Language Processing

Scaling Conditional Random Fields for Natural Language Processing

ID:37659130

大小:1.85 MB

页数:195页

时间:2019-05-27

Scaling Conditional Random Fields for Natural Language Processing_第1页
Scaling Conditional Random Fields for Natural Language Processing_第2页
Scaling Conditional Random Fields for Natural Language Processing_第3页
Scaling Conditional Random Fields for Natural Language Processing_第4页
Scaling Conditional Random Fields for Natural Language Processing_第5页
资源描述:

《Scaling Conditional Random Fields for Natural Language Processing》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、ScalingConditionalRandomFieldsforNaturalLanguageProcessingTrevorA.CohnSubmittedintotalfulfilmentoftherequirementsofthedegreeofDoctorofPhilosophyJanuary,2007DepartmentofComputerScienceandSoftwareEngineeringFacultyofEngineeringUniversityofMelbourneAbstractThisthesisdealswiththeuseofConditionalRandom

2、Fields(CRFs;Laffertyetal.(2001))forNaturalLanguageProcessing(NLP).CRFsareprobabilisticmodelsforsequencelabellingwhichareparticularlywellsuitedtoNLP.Theyhavemanycompellingadvan-tagesoverotherpopularmodelssuchasHiddenMarkovModelsandMaximumEntropyMarkovModels(Rabiner,1990;McCallumetal.,2001),andhaveb

3、eenappliedtoanum-berofNLPtaskswithconsiderablesuccess(e.g.,ShaandPereira(2003)andSmithetal.(2005)).Despitetheirapparentsuccess,CRFssufferfromtwomainfailings.Firstly,theyoftenover-fitthetrainingsample.Thisisaconsequenceoftheirconsiderableexpres-sivepower,andcanbelimitedbyaprioroverthemodelparameters

4、(ShaandPereira,2003;PengandMcCallum,2004).TheirsecondfailingisthatthestandardmethodsforCRFtrainingareoftenveryslow,sometimesrequiringweeksofprocessingtime.Thisefficiencyproblemislargelyignoredincurrentliterature,althoughinpractisethecostoftrainingpreventstheapplicationofCRFstomanynewmorecomplextask

5、s,andalsopreventstheuseofdenselyconnectedgraphs,whichwouldallowformuchricherfeaturesets.Thisthesisaddressestheissueoftrainingefficiency.Firstly,wedemonstratethattheasymptotictimecomplexityofstandardtrainingforalinearchainCRFisquadraticinthesizeofthelabelset,linearinthenumberoffeaturesandalmostquadr

6、aticinthesizeofthetrainingsample.Thecostofinferenceincyclicgraphs,suchaslatticestructuredDynamicCRFs(Suttonetal.,2004),isevengreater.ThecomplexityoftraininglimitstheapplicationofCRFstolargeandcomplextasks.Wecomparetheaccuracyofanumberofpopularapproximatetrainingtechniques,whichcangreatlyreducethe

7、trainingcost.However,formosttasksthissavingiscoupledwithasubstantiallossinaccuracy.Forthisreasonweproposetwonoveltrainingmethods,whichbothreducetheresourcerequirementsandimprovethescalabilityoftraining,suchthatCRFscanb

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。