资源描述:
《training conditional random fields using virtual evidence boosting》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、TrainingConditionalRandomFieldsusingVirtualEvidenceBoostingLinLiaoTanzeemChoudhury†DieterFoxHenryKautzUniversityofWashington†IntelResearchDepartmentofComputerScience&Engineering1100NE45thSt.Seattle,WA98195Seattle,WA98105Abstracteraldomains.However,nogeneralguidancehasbeengivenonwhenMPL
2、canbesafelyused,andindeedMPLhasbeenWhileconditionalrandomfields(CRFs)havebeenobservedtoover-estimatethedependencyparametersinsomeappliedsuccessfullyinavarietyofdomains,theirexperiments[GeyerandThompson,1992].trainingremainsachallengingtask.Inthispaper,Inaddition,neitherMLnorMPLperformsf
3、eatureselec-weintroduceanoveltrainingmethodforCRFs,tionexplicitly,andneitherofthemisabletoadequatelyhan-calledvirtualevidenceboosting,whichsimulta-dlecontinuousobservations.Theselimitationsmakethemneouslyperformsfeatureselectionandparameterunsuitableforsometasks,suchasactivityrecogniti
4、onbasedestimation.Toachievethis,weextendstandardonrealsensordataandidentifyingthesetoffeaturesthatboostingtohandlevirtualevidence,whereanob-aremostusefulforclassification.Alternatively,boostinghasservationcanbespecifiedasadistributionratherbeensuccessfullyusedforfeatureselectioninthecont
5、extofthanasinglenumber.Thisextensionallowsustoclassificationproblems[ViolaandJones,2002].However,itsdevelopaunifiedframeworkforlearningbothlocalapplicationtorelationaldataremainsanunsolvedproblemandcompatibilityfeaturesinCRFs.Inexperimentssinceitassumestheindependenceofhiddenlabels.onsyn
6、theticdataaswellasrealactivityclassifi-Inthispaper,weshowhowtoseamlesslyintegrateboost-cationproblems,ournewtrainingalgorithmout-ingandCRFtraining,therebycombiningthecapabilitiesofperformsothertrainingapproachesincludingmax-bothparadigms.Theintegrationisachievedbycuttingaimumlikelihood,
7、maximumpseudo-likelihood,andCRFintoindividualpatches,asdoneinMPL,andusingthesethemostrecentboostedrandomfields.patchesastraininginstancesforboosting.ThekeydifferencetoMPL,however,isthatinourframeworktheneighborlabels1Introductionarenottreatedasobserved,butasvirtualevidencesorbeliefs.T