training conditional random fields using virtual evidence boosting

training conditional random fields using virtual evidence boosting

ID:34414996

大小:142.61 KB

页数:6页

时间:2019-03-05

training conditional random fields using virtual evidence boosting_第1页
training conditional random fields using virtual evidence boosting_第2页
training conditional random fields using virtual evidence boosting_第3页
training conditional random fields using virtual evidence boosting_第4页
training conditional random fields using virtual evidence boosting_第5页
资源描述:

《training conditional random fields using virtual evidence boosting》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、TrainingConditionalRandomFieldsusingVirtualEvidenceBoostingLinLiaoTanzeemChoudhury†DieterFoxHenryKautzUniversityofWashington†IntelResearchDepartmentofComputerScience&Engineering1100NE45thSt.Seattle,WA98195Seattle,WA98105Abstracteraldomains.However,nogeneralguidancehasbeengivenonwhenMPL

2、canbesafelyused,andindeedMPLhasbeenWhileconditionalrandomfields(CRFs)havebeenobservedtoover-estimatethedependencyparametersinsomeappliedsuccessfullyinavarietyofdomains,theirexperiments[GeyerandThompson,1992].trainingremainsachallengingtask.Inthispaper,Inaddition,neitherMLnorMPLperformsf

3、eatureselec-weintroduceanoveltrainingmethodforCRFs,tionexplicitly,andneitherofthemisabletoadequatelyhan-calledvirtualevidenceboosting,whichsimulta-dlecontinuousobservations.Theselimitationsmakethemneouslyperformsfeatureselectionandparameterunsuitableforsometasks,suchasactivityrecogniti

4、onbasedestimation.Toachievethis,weextendstandardonrealsensordataandidentifyingthesetoffeaturesthatboostingtohandlevirtualevidence,whereanob-aremostusefulforclassification.Alternatively,boostinghasservationcanbespecifiedasadistributionratherbeensuccessfullyusedforfeatureselectioninthecont

5、extofthanasinglenumber.Thisextensionallowsustoclassificationproblems[ViolaandJones,2002].However,itsdevelopaunifiedframeworkforlearningbothlocalapplicationtorelationaldataremainsanunsolvedproblemandcompatibilityfeaturesinCRFs.Inexperimentssinceitassumestheindependenceofhiddenlabels.onsyn

6、theticdataaswellasrealactivityclassifi-Inthispaper,weshowhowtoseamlesslyintegrateboost-cationproblems,ournewtrainingalgorithmout-ingandCRFtraining,therebycombiningthecapabilitiesofperformsothertrainingapproachesincludingmax-bothparadigms.Theintegrationisachievedbycuttingaimumlikelihood,

7、maximumpseudo-likelihood,andCRFintoindividualpatches,asdoneinMPL,andusingthesethemostrecentboostedrandomfields.patchesastraininginstancesforboosting.ThekeydifferencetoMPL,however,isthatinourframeworktheneighborlabels1Introductionarenottreatedasobserved,butasvirtualevidencesorbeliefs.T

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。