markov random fields and applications

markov random fields and applications

ID:30015777

大小:1.36 MB

页数:21页

时间:2018-12-26

markov random fields and applications_第1页
markov random fields and applications_第2页
markov random fields and applications_第3页
markov random fields and applications_第4页
markov random fields and applications_第5页
资源描述:

《markov random fields and applications》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MarkovRandomFieldsandApplicationsClicktoeditMastersubtitlestyleSoumyaGhosh09年3月25日Outline•MRFbasics–BayesianImageAnalysis–MarkovRandomFieldstheory–Gibbs–MarkovEquivalence–Inference–Learning•Application–ImageSegmentation09年3月25日BayesianImageAnalysisNoiseTransmissionOriginalImageDegraded(observ

2、ed)Image09年3月25日BayesianImageAnalysis•LetXbetheobservedimage={x1,x2…xmn}•LetYbethetrueimage={y1,y2…ymn}•Goal:findY=y*={y1*,y2*…}suchthatP(Y=y*

3、X)ismaximum.•LabelingproblemwithasearchspaceofLmn–Listhesetoflabels.–m*nobservations.3/25/09FirstGuess•Assumethelabelsyiareindependent.P(Y

4、X)=∏mni=1P(

5、yi

6、xi)MaximizingP(Y

7、X)boilsdowntosimplymaximizingtheindividualP(yi)s.3/25/09UnfortunatelyObservedSVMMRFImage3/25/09MarkovRandomFields•Introducedinthe1960s,aprincipledapproachforincorporatingcontextinformation.•Incorporatingdomainknowledge.•WorkswithintheBayesianframework.•Widelyworkedoninthe7

8、0sdisappearedoverthe80sandfinallymadeabigcomebackinthelate90s.3/25/09MarkovRandomField•RandomField:LetbeafamilyF={F,F,...,F}12MofrandomvariablesdefinedonthesetS,inwhicheachrandomvariabletakesavalueinalabelsetL.ThefamilyFiscalledarandomfield.Ffii•MarkovRandomField:FissaidtobeaMarkovrandomfield

9、 onSwithrespecttoaneighborhoodsystemNifandonlyifthefollowingtwoconditionsaresatisfied:Possitivity:P(f)>0,"fÎFMarkovianity:P(f

10、S-{i})=P(f

11、f)iiNi3/25/09ImageAnalysis•Wecouldthusrepresentboththeobservedimage(X)andthetrueimage(Y)asMarkovrandomfields.X–observedimageY–trueimage•AndinvoketheBayesian

12、frameworktofindP(Y

13、X)3/25/09Details•P(Y

14、X)proportionaltoP(X

15、Y)P(Y)–P(X

16、Y)isthedatamodel.–P(Y)modelsthelabelinteraction.•NextweneedtocomputethepriorP(Y=y)andthelikelihoodP(X

17、Y).3/25/09Cliques•AcliqueisdefinedasasubsetofsitesinF,whereeverypairofsitesareneighborsofeachother.Thecollectionsofsingl

18、e-site,double-site,andtriple-sitecliquesaredenotedbyC1,C2,C3and…Cn3/25/09Markov–GibbsEquivalence•GibbsDistribution:P(f)=(1/Z)e(-1/T)U(f)whereU(f)=∑cinCVc(f)=∑iinC1V1(fi)+∑iinC2V2(fi,fj)+…Z–NormalizingFactoroverthespaceofallconfigurations.•Ham

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。