资源描述:
《A Prufer Method for Calculating Eigenvalues of selfadjoint Systems of Ordinary Differential》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、APruferMethodforCalculatingEigenvaluesofSelf-AdjointSystemsofOrdinaryDierentialEquations.Part1.LeonGreenbergDepartmentofMathematicsUniversityofMarylandCollegePark,Maryland20742AbstractAgeneralizationofthePrufermethod(forSturm-Liouvilleproblems)isdevel-opedforapproximatingtheeigenvaluesoflinear,se
2、lf-adjoint,elliptic,2-pointthboundaryvalueproblemsofarbitraryorder.Theneigenvaluecanbeapprox-imatedwithoutconsiderationofothereigenvalues,andanposteriorierroresti-mateisprovided.Themethodcanbeadaptedtoproblemswheretheeigenvalueoccursnonlinearlyinthedierentialequationandmayoccurintheboundarycondit
3、ions.ThemethodisbasedonaformulaforthespectralfunctionN(),whichequalsthenumberofeigenvalueslessthan.InPart1,variationalprinciplesforeigenvaluesareappliedtondtherstoftwoformulasforN().Keywords:Eigenvalue,spectralfunction,self-adjoint,elliptic,boundarycondi-tion,energyform,Rayleighquotient,Prufe
4、rmethod,Hamiltoniansystem,symplecticstructure,Lagrangianplane,unitarymatrix,phaseangle,Sturmcomparisontheorem.AMS(MOS)classication:65L15TableofContentsPart1Contents1Introduction.12TheClassicalPruferMethod.43TheHamiltonianSystem.74Self-AdjointnessandSymplecticStructure.95LagrangianPlanes.126PhaseA
5、ngles.157TheEnergyForm.188TheSpectralFunctionN().229NonseparatedBoundaryConditions351Introduction.Twostandardapproachestothenumericalapproximationofeigenvaluesfor2-pointboundaryvalueproblemsarediscretizationandshooting.Discretizationmethods(suchasnitedierencesandniteelements)involvesubstantial
6、arithmeticandthestorageoflargematrices.Moreover,theaccuracyquicklydeterioratesforthehighereigenvalues.Shootingmethodsrequirelessstorageandarithmetic,butusuallytheydonotdeterminethemodeoftheeigenvalue.(Thuswehavenowayofknowingifwehavefoundtherst,thirdorseventeentheigenvalue.)ForSturm-Liouvilleprob
7、lems,thesedicultiesareavoidedbythePrufermethod,whichisashootingmethodbasedonoscillation.IthasbeenimplementedbyP.Bailey,M.GordonandL.Shampine[4]intheSLEIGNCode,andbyJ.D.Pryce[17]intheNAGlibrarycodeDO2KDF.Inthispa