numerical_solution_of_ordinary_differential_equations

numerical_solution_of_ordinary_differential_equations

ID:40382787

大小:548.63 KB

页数:31页

时间:2019-08-01

numerical_solution_of_ordinary_differential_equations _第1页
numerical_solution_of_ordinary_differential_equations _第2页
numerical_solution_of_ordinary_differential_equations _第3页
numerical_solution_of_ordinary_differential_equations _第4页
numerical_solution_of_ordinary_differential_equations _第5页
资源描述:

《numerical_solution_of_ordinary_differential_equations 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、NumericalAnalysisDamingLiDepartmentofMathematics,ShanghaiJiaoTongUniversity,Shanghai,200240,ChinaEmail:lidaming@sjtu.edu.cnOctober14,2014DamingLiNumericalAnalysisExistenceandUniquenessofSolutionsConsideraninitial-valueproblem(x′=f(t,x)x(t0)=x0Herexisanunknownfunctionoft,wherex′=dx(t)/dt.Forexamp

2、le,(x′=xtan(t+3)x(−3)=1Theanalyticsolutionisx(t)=sec(t+3).Typically,fortheaboveproblem,analyticsolutionsarenotavailableandnumericalmethodsmustbeemployed.DamingLiNumericalAnalysisExistenceandUniquenessofSolutionsIffiscontinuousinarectangleRcenteredat(t0,x0),sayR={(t,x):

3、t−t0

4、≤α,

5、x−x0

6、≤β}thenthein

7、itial-valueproblemhasasolutionx(t)for

8、t−t0

9、≤min(α,β/M),whereMisthemaximumof

10、f(t,x)

11、intherectangleR.DamingLiNumericalAnalysisExistenceandUniquenessofSolutionsProvethattheinitial-valueproblem(x′=(t+sinx)2x(0)=3hasasolutionontheinterval−1≤t≤1.Takingf(t,x)=(t+sinx)2and(t,x)=(0,3).Therectangleis00R={

12、(t,x):

13、t

14、≤α,

15、x−3

16、≤β}Themagnitudeoffisboundedby

17、f(t,x)

18、≤(α+1)2≡MWewantmin(α,β/M)≥1,andsowecanletα=1.ThenM=4,andourobjectiveismetbylettingβ≥4.DamingLiNumericalAnalysisExistenceandUniquenessofSolutionsIffiscontinuousinthestripa≤t≤b,−∞

19、f(t,x1)−f(t,x2)

20、≤L

21、x1−x2

22、the

23、ntheinitial-valueproblemhasauniquesolutionintheinterval[a,b].DamingLiNumericalAnalysisTaylor-SeriesMethod(x′=cost−sinx+t2x(−1)=3h2h3h4x(t+h)=x(t)+hx′(t)+x(2)(t)++x(3)(t)+x(4)(t)+···2!3!4!x(2)=−sint−x′cosx+2tx(3)=−cost−x(2)cosx+(x′)2sint+2x(4)=sint−x(3)cosx+3x′x(2)sinx+(x′)3cosxSubstitutingallthe

24、derivativesattuptofourthorderandtruncatingtotheorderh4,wecancalculatex(t+h)withthetruncationerrorO(h5).DamingLiNumericalAnalysisTaylor-SeriesMethodAlthoughthetruncationerrorcanbeveryhighbyTaylor-seriesmethod,therearemanydisadvantagesinthismethod.First,themethoddependsonrepeateddifferentiationoft

25、hegivendifferentialequation.Hence,thefunctionf(t,x)mustpossesspartialderivativesintheregionwherethesolutioncurvepassesinthetx-plane.Suchanassumptionis,ofcourse,notnecessaryfortheexistenceofasolution.Secondly,variousderivativ

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签