资源描述:
《ordinary differential equations and dynamical systems - g. teschl》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、OrdinarydifferentialequationsandDynamicalSystemsGeraldTeschlGeraldTeschlInstitutf¨urMathematikStrudlhofgasse4Universit¨atWien1090Wien,AustriaE-mail:Gerald.Teschl@univie.ac.atURL:http://www.mat.univie.ac.at/~gerald/1991Mathematicssubjectclassification.34-
2、01Abstract.Thismanuscriptprovidesanintroductiontoordinarydifferentialequationsanddynamicalsystems.Westartwithsomesimpleexamplesofexplicitlysolvableequations.Thenweprovethefundamentalresultsconcerningtheinitialvalueproblem:existence,uniqueness,extensibil
3、ity,dependenceoninitialconditions.Furthermoreweconsiderlinearequations,theFloquettheorem,andtheautonomouslinearflow.ThenweestablishtheFrobeniusmethodforlinearequationsinthecom-plexdomainandinvestigatesSturm–Liouvilletypeboundaryvalueproblemsincludingosc
4、illationtheory.Nextweintroducetheconceptofadynamicalsystemanddiscusssta-bilityincludingthestablemanifoldandtheHartman–Grobmantheoremforbothcontinuousanddiscretesystems.WeprovethePoincar´e–Bendixsontheoremandinvestigateseveralex-amplesofplanarsystemsfro
5、mclassicalmechanics,ecology,andelectricalengineering.Moreover,attractors,Hamiltoniansystems,theKAMtheorem,andperiodicsolutionsarediscussedaswell.Finally,thereisanintroductiontochaos.BeginningwiththebasicsforiteratedintervalmapsandendingwiththeSmale–Bir
6、khofftheoremandtheMelnikovmethodforhomoclinicorbits.Keywordsandphrases.Ordinarydifferentialequations,dynamicalsystems,Sturm-Liouvilleequations.TypesetbyAMS-LATEXandMakeindex.Version:February18,2004Copyrightc2000-2004byGeraldTeschlContentsPrefaceviiPart1.
7、ClassicaltheoryChapter1.Introduction3§1.1.Newton’sequations3§1.2.Classificationofdifferentialequations5§1.3.Firstorderautonomousequations8§1.4.Findingexplicitsolutions11§1.5.Qualitativeanalysisoffirstorderequations16Chapter2.Initialvalueproblems21§2.1.Fix
8、edpointtheorems21§2.2.Thebasicexistenceanduniquenessresult23§2.3.Dependenceontheinitialcondition26§2.4.Extensibilityofsolutions29§2.5.Euler’smethodandthePeanotheorem32§2.6.Appendix:Volterraintegralequations34Chapter3.Linearequations41§3