中学数学的思想方法和几何证明的方法

中学数学的思想方法和几何证明的方法

ID:37589560

大小:28.50 KB

页数:3页

时间:2019-05-25

中学数学的思想方法和几何证明的方法_第1页
中学数学的思想方法和几何证明的方法_第2页
中学数学的思想方法和几何证明的方法_第3页
资源描述:

《中学数学的思想方法和几何证明的方法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、中学数学的思想方法和几何证明的方法。一、常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整

2、体的转化、动与静的转化等等。3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。配方法是初中代数中重要的

3、变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称

4、为“执果寻因”8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”9、演绎法:由一般到特殊的推理方法。10、归纳法:由一般到特殊的推理方法。11、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间,根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。类比法既可能是特殊到特殊,也可能一般到一般的推理。二、函数、方程、不等式常用的数学思想方法:⑴数形结合的思想方法。⑵待定系数法。⑶配方法。⑷联

5、系与转化的思想。⑸图像的平移变换。三、证明角的相等1、对顶角相等。2、角(或同角)的补角相等或余角相等。3、两直线平行,同位角相等、内错角相等。4、凡直角都相等。5、角平分线分得的两个角相等。6、同一个三角形中,等边对等角。7、等腰三角形中,底边上的高(或中线)平分顶角。8、平行四边形的对角相等。9、菱形的每一条对角线平分一组对角。10、等腰梯形同一底上的两个角相等。11、关系定理:同圆或等圆中,若有两条弧(或弦、或弦心距)相等,则它们所对的圆心相等。12、圆内接四边形的任何一个外角都等于它的内对角。13、

6、同弧或等弧所对的圆周角相等。14、弦切角等于它所夹的弧对的圆周角。15、同圆或等圆中,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。16、全等三角形的对应角相等。17、相似三角形的对应角相等。18、利用等量代换。19、利用代数或三角计算出角的度数相等20、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两条切线的夹角。四、证明直线的平行或垂直1、证明两条直线平行的主要依据和方法:⑴、定义、在同一平面内不相交的两条直线平行。⑵、平行定理、两条直线都和第三条直线平行,这两

7、条直线也互相平行。⑶、平行线的判定:同位角相等(内错角或同旁内角),两直线平行。⑷、平行四边形的对边平行。⑸、梯形的两底平行。⑹、三角形(或梯形)的中位线平行与第三边(或两底)⑺、一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边。2、证明两条直线垂直的主要依据和方法:⑴、两条直线相交所成的四个角中,由一个是直角时,这两条直线互相垂直。⑵、直角三角形的两直角边互相垂直。⑶、三角形的两个锐角互余,则第三个内角为直角。⑷、三角形一边的中线等于这边的一半,则这个三角形为直

8、角三角形。⑸、三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。⑹、三角形(或多边形)一边上的高垂直于这边。⑺、等腰三角形的顶角平分线(或底边上的中线)垂直于底边。⑻、矩形的两临边互相垂直。⑼、菱形的对角线互相垂直。⑽、平分弦(非直径)的直径垂直于这条弦,或平分弦所对的弧的直径垂直于这条弦。⑾、半圆或直径所对的圆周角是直角。⑿、圆的切线垂直于过切点的半径。⒀、相交两圆的连心线垂直于两圆的公共弦。五、证

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。