The canonical shrinking soliton associated to a Ricci f

The canonical shrinking soliton associated to a Ricci f

ID:37584065

大小:232.69 KB

页数:12页

时间:2019-05-25

The canonical shrinking soliton associated to a Ricci f_第1页
The canonical shrinking soliton associated to a Ricci f_第2页
The canonical shrinking soliton associated to a Ricci f_第3页
The canonical shrinking soliton associated to a Ricci f_第4页
The canonical shrinking soliton associated to a Ricci f_第5页
资源描述:

《The canonical shrinking soliton associated to a Ricci f》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、thecanonicalshrinkingsolitonassociatedtoaricciflowEstherCabezas-RivasandPeterM.Topping4February2010AbstractToeveryRicci owonamanifoldMoveratimeintervalIR,weassociateashrinkingRiccisolitononthespace-timeMI.WerelatepropertiesoftheoriginalRicci owtopropertiesofth

2、enewhigher-dimensionalRicci owequippedwithitsowntime-parameter.Thisgeometricconstructionwasdiscoveredbyconsiderationofthetheoryofoptimaltransportation,andinparticulartheresultsofthesecondauthor[18],andMcCannandthesecondauthor[12];webrie ysurveythelinkbetweenthese

3、subjects.1IntroductionIn1982,Hamilton[7]introducedthestudyofRicci ow,whichevolvesaRiemannianmetricgonamanifoldMunderthenonlinearevolutionequation@g=2Ric(g(t));(1.1)@tfortinsometimeintervalIR.Sincethen,thesubjecthasdevelopedsteadily,andhasbecomeestablishedasane

4、ectivebridgebetweenanalysis,geometryandtopology(seeforexample[13],[14],[15]andtheoverviewin[17]).TheinitialprogressrelevanttothepresentpaperwasHamilton'sdiscoveryin1993oftheso-calledHarnackquantities(see[8]formoreinformation)andby1995,NolanWallach[9,x14]hadpropos

5、edthatthesequantitiesshouldariseassomesortofcurvatureofsomehigher-dimensionalmanifoldorbundleassociatedtotheRicci ow.ThisideawasdevelopedbyChowandChu[2]whoconsideredthespace-timemanifoldMI,andde nedapair(~g;re)ofametriconitscotangentbundledegenerateinthetimedire

6、ctionanda~g-compatibletorsion-freeconnection(whichisnotuniqueowingtothedegeneracyof~g)sothatthederivativesinthetimecoordinatedirectionofthecomponentsof(~g;re)resembletheformulaeonecancomputefortheevolutionofthecomponentsofthemetricanditsLevi-Civitaconnectionunder

7、Ricci ow.(See[2]formoredetails.)ItturnsoutthatHamilton'smatrixHarnackquadraticisalmosttheRiemanniancurvatureofthatspace-timeconnection.AnimprovedcorrespondenceisestablishedintheworkofChowandKnopf[4]byconsideringRicci owwitha`cosmologicalterm'.(Anexampleofsucha ow

8、wouldbeg(t):=1g(t),fort=logt,whereg(t)isaRicci ow.)tIn2002,Perelman[13,x6]madeanewbreakthroughalongtheselinesinvolvingtheconstructionofanessentiallyRicci- a

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。