欢迎来到天天文库
浏览记录
ID:14356461
大小:952.62 KB
页数:134页
时间:2018-07-28
《lectures on the ricci flow》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、lecturesonthericciflow1PeterToppingMarch9,20061cPeterTopping2004,2005,2006.Contents1Introduction61.1Ricciflow:whatisit,andfromwherediditcome?......61.2Examplesandspecialsolutions.................81.2.1Einsteinmanifolds....................81.2.2Riccisolitons...................
2、....81.2.3ParabolicrescalingofRicciflows............111.3GettingafeelforRicciflow...................121.3.1Twodimensions.....................121.3.2Threedimensions.....................131.4Thetopologyandgeometryofmanifoldsinlowdimensions.171.5UsingRicciflowtoprovetopologicaland
3、geometricresults.212Riemanniangeometrybackground242.1Notationandconventions....................242.2Einsteinmetrics..........................282.3DeformationofgeometricquantitiesastheRiemannianmet-ricisdeformed..........................282.3.1Theformulae.....................
4、..282.3.2Thecalculations.....................322.4Laplacianofthecurvaturetensor................392.5EvolutionofcurvatureandgeometricquantitiesunderRicciflow................................413Themaximumprinciple443.1Statementofthemaximumprinciple..............443.2Basiccontrol
5、ontheevolutionofcurvature...........453.3Globalcurvaturederivativeestimates..............494CommentsonexistencetheoryforparabolicPDE534.1LinearscalarPDE........................534.2Theprincipalsymbol.......................544.3GeneralisationtoVectorBundles................564
6、.4Propertiesofparabolicequations................5815ExistencetheoryfortheRicciflow595.1Ricciflowisnotparabolic....................595.2Short-timeexistenceanduniqueness:TheDeTurcktrick...605.3Curvatureblow-upatfinite-timesingularities.........636Ricciflowasagradientflow676.1Gradie
7、ntoftotalscalarcurvatureandrelatedfunctionals..676.2TheF-functional.........................686.3Theheatoperatoranditsconjugate..............706.4Agradientflowformulation...................706.5Theclassicalentropy.......................746.6Thezerotheigenvalueof−4∆+R.........
8、......767CompactnessofRiemannianmanifoldsandflows787.1Convergenceandcompactn
此文档下载收益归作者所有