ricci flow in riemannian geometry[ben andrews]

ricci flow in riemannian geometry[ben andrews]

ID:15504619

大小:2.29 MB

页数:321页

时间:2018-08-03

ricci flow in riemannian geometry[ben andrews]_第1页
ricci flow in riemannian geometry[ben andrews]_第2页
ricci flow in riemannian geometry[ben andrews]_第3页
ricci flow in riemannian geometry[ben andrews]_第4页
ricci flow in riemannian geometry[ben andrews]_第5页
资源描述:

《ricci flow in riemannian geometry[ben andrews]》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、LectureNotesinMathematics2011Editors:J.-M.Morel,CachanF.Takens,GroningenB.Teissier,ParisBenAndrews·ChristopherHopperTheRicciFlowinRiemannianGeometryACompleteProofoftheDifferentiable1/4-PinchingSphereTheorem123BenAndrewsChristopherHopperAustralianNationalU

2、niversityUniversityofOxfordMathematicalSciencesInstituteMathematicalInstituteACT0200AustraliaStGiles’24-29Ben.Andrews@anu.edu.auOX13LBOxfordUnitedKingdomhopper@maths.ox.ac.ukISBN:978-3-642-16285-5e-ISBN:978-3-642-16286-2DOI:10.1007/978-3-642-16286-2Sprin

3、gerHeidelbergDordrechtLondonNewYorkLectureNotesinMathematicsISSNprintedition:0075-8434ISSNelectronicedition:1617-9692MathematicsSubjectClassification(2010):35-XX,53-XX,58-XX©Springer-VerlagBerlinHeidelberg2011Thisworkissubjecttocopyright.Allrightsarereser

4、ved,whetherthewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublicationorpartsthereofispermittedo

5、nlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.ViolationsareliabletoprosecutionundertheGermanCopyrightLaw.Theuseofgeneraldescriptivenames,registerednames,trademarks,et

6、c.inthispublicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.Coverdesign:SPiPublisherServicesPrintedonacid-freepaperSpringerispartofSpringerScience+Busi

7、nessMedia(www.springer.com)Forintheverytorrent,tempest,andasImaysay,whirlwindofyourpassion,youmustacquireandbegetatemperancethatmaygiveitsmoothness.—Shakespeare,Hamlet.PrefaceThereisafamoustheorembyRauch,KlingenbergandBergerwhichstatesthatacompletesimply

8、connectedn-dimensionalRiemannianmanifold,forwhichthesectionalcurvaturesarestrictlybetween1and4,ishomeomorphictoan-sphere.Ithasbeenalongstandingopenconjectureastowhetherornotthe‘homeomorphism’conclusioncouldbestrengthenedto

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。