资源描述:
《ricci flow in riemannian geometry[ben andrews]》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、LectureNotesinMathematics2011Editors:J.-M.Morel,CachanF.Takens,GroningenB.Teissier,ParisBenAndrews·ChristopherHopperTheRicciFlowinRiemannianGeometryACompleteProofoftheDifferentiable1/4-PinchingSphereTheorem123BenAndrewsChristopherHopperAustralianNationalU
2、niversityUniversityofOxfordMathematicalSciencesInstituteMathematicalInstituteACT0200AustraliaStGiles’24-29Ben.Andrews@anu.edu.auOX13LBOxfordUnitedKingdomhopper@maths.ox.ac.ukISBN:978-3-642-16285-5e-ISBN:978-3-642-16286-2DOI:10.1007/978-3-642-16286-2Sprin
3、gerHeidelbergDordrechtLondonNewYorkLectureNotesinMathematicsISSNprintedition:0075-8434ISSNelectronicedition:1617-9692MathematicsSubjectClassification(2010):35-XX,53-XX,58-XX©Springer-VerlagBerlinHeidelberg2011Thisworkissubjecttocopyright.Allrightsarereser
4、ved,whetherthewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublicationorpartsthereofispermittedo
5、nlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.ViolationsareliabletoprosecutionundertheGermanCopyrightLaw.Theuseofgeneraldescriptivenames,registerednames,trademarks,et
6、c.inthispublicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.Coverdesign:SPiPublisherServicesPrintedonacid-freepaperSpringerispartofSpringerScience+Busi
7、nessMedia(www.springer.com)Forintheverytorrent,tempest,andasImaysay,whirlwindofyourpassion,youmustacquireandbegetatemperancethatmaygiveitsmoothness.—Shakespeare,Hamlet.PrefaceThereisafamoustheorembyRauch,KlingenbergandBergerwhichstatesthatacompletesimply
8、connectedn-dimensionalRiemannianmanifold,forwhichthesectionalcurvaturesarestrictlybetween1and4,ishomeomorphictoan-sphere.Ithasbeenalongstandingopenconjectureastowhetherornotthe‘homeomorphism’conclusioncouldbestrengthenedto