lectures on the ricci flow

lectures on the ricci flow

ID:14356461

大小:952.62 KB

页数:134页

时间:2018-07-28

lectures on the ricci flow_第1页
lectures on the ricci flow_第2页
lectures on the ricci flow_第3页
lectures on the ricci flow_第4页
lectures on the ricci flow_第5页
资源描述:

《lectures on the ricci flow》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、lecturesonthericciflow1PeterToppingMarch9,20061cPeterTopping2004,2005,2006.Contents1Introduction61.1Ricciflow:whatisit,andfromwherediditcome?......61.2Examplesandspecialsolutions.................81.2.1Einsteinmanifolds....................81.2.2Riccisolitons...................

2、....81.2.3ParabolicrescalingofRicciflows............111.3GettingafeelforRicciflow...................121.3.1Twodimensions.....................121.3.2Threedimensions.....................131.4Thetopologyandgeometryofmanifoldsinlowdimensions.171.5UsingRicciflowtoprovetopologicaland

3、geometricresults.212Riemanniangeometrybackground242.1Notationandconventions....................242.2Einsteinmetrics..........................282.3DeformationofgeometricquantitiesastheRiemannianmet-ricisdeformed..........................282.3.1Theformulae.....................

4、..282.3.2Thecalculations.....................322.4Laplacianofthecurvaturetensor................392.5EvolutionofcurvatureandgeometricquantitiesunderRicciflow................................413Themaximumprinciple443.1Statementofthemaximumprinciple..............443.2Basiccontrol

5、ontheevolutionofcurvature...........453.3Globalcurvaturederivativeestimates..............494CommentsonexistencetheoryforparabolicPDE534.1LinearscalarPDE........................534.2Theprincipalsymbol.......................544.3GeneralisationtoVectorBundles................564

6、.4Propertiesofparabolicequations................5815ExistencetheoryfortheRicciflow595.1Ricciflowisnotparabolic....................595.2Short-timeexistenceanduniqueness:TheDeTurcktrick...605.3Curvatureblow-upatfinite-timesingularities.........636Ricciflowasagradientflow676.1Gradie

7、ntoftotalscalarcurvatureandrelatedfunctionals..676.2TheF-functional.........................686.3Theheatoperatoranditsconjugate..............706.4Agradientflowformulation...................706.5Theclassicalentropy.......................746.6Thezerotheigenvalueof−4∆+R.........

8、......767CompactnessofRiemannianmanifoldsandflows787.1Convergenceandcompactn

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。