欢迎来到天天文库
浏览记录
ID:37512355
大小:4.27 MB
页数:30页
时间:2019-05-11
《材料科学基础(清华大学)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、材料科学基础FundamentalofMaterialsProf:TianMinBoTel:62795426,62772851E-mail:tmb@mail.tsinghua.edu.cnDepartmentofMaterialScienceandEngineeringTsinghuaUniversity.Beijing100084§2.1SpaceLatticeⅠ.Crystalsversusnon-crystals1.ClassificationoffunctionalmaterialsChapterⅡFundamenta
2、lsofCrystallographyLessonthree2.ClassificationofmaterialsbasedonstructureRegularityinatomarrangement——periodicornot(amorphous)Crystalline:Thematerialsatomsarearrangedinaperiodicfashion.Amorphous:Thematerial’satomsdonothavealong-rangeorder(0.1~1nm).Singlecrystal:inth
3、eformofonecrystalgrainsPolycrystalline:grainboundariesⅡ.Spacelattice1.Definition:Spacelatticeconsistsofanarrayofregularlyarrangedgeometricalpoints,calledlatticepoints.The(periodic)arrangementofthesepointsdescribestheregularityofthearrangementofatomsincrystals.2.Twob
4、asicfeaturesoflatticepointsPeriodicity:Arrangedinaperiodicpattern.Identity:Thesurroundingsofeachpointinthelatticeareidentical.Alatticemaybeone,two,orthreedimensionaltwodimensionsSpacelatticeisapointarraywhichrepresentstheregularityofatomarrangements(1)(2)(3)abThreed
5、imensionsEachlatticepointhasidenticalsurroundingenvironmentⅢ.UnitcellandlatticeconstantsUnitcellisthesmallestunitofthelattice.Thewholelatticecanbeobtainedbyinfinitiverepetitionoftheunitcellalongit’sthreeedges.Thespacelatticeischaracterizedbythesizeandshapeoftheunitc
6、ell.Howtodistinguishthesizeandshapeofthedeferentunitcell?Thesixvariables,whicharedescribedbylatticeconstants——a,b,c;α,β,γLatticeConstantsacbαβγacbαβγ§2.2CrystalSystem&LatticeTypesIfarotationaroundanaxispassingthroughthecrystalbyanangleof360o/ncanbringthecrystalintoc
7、oincidencewithitself,thecrystalissaidtohavean-foldrotationsymmetry.Andaxisissaidtoben-foldrotationaxis.Weidentify14typesofunitcells,orBravaislattices,groupedinsevencrystalsystems.Ⅰ.SevencrystalsystemsAllpossiblestructurereducetoasmallnumberofbasicunitcellgeometries.
8、Thereareonlyseven,uniqueunitcellshapesthatcanbestackedtogethertofillthree-dimensional.Wemustconsiderhowatomscanbestackedtogetherwithinagiv
此文档下载收益归作者所有