欢迎来到天天文库
浏览记录
ID:37482449
大小:198.50 KB
页数:11页
时间:2019-05-24
《第3、4课时 函数的表示法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、函数的表示法引入课题1.复习:初中学过的三种函数的定义域、值域、图像;2.函数的三种表示法:解析法、图像法和列表法。新课教学(一)典型例题分析[例1].某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(x).分析:注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.解:(略)注:函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据:任作垂直于x轴的直线,若此直线与图象只
2、有一个交点,则图象即为在此定义域上的函数图象。举例说明解析法:必须注明函数的定义域;图象法:是否连线;列表法:选取的自变量要有代表性,应能反映定义域的特征.思考:函数三种表示法的特点?3.常用的函数表示法及各自的优缺点:优点缺点解析法1简明、全面概括了变量间的关系2通过解析式可以求出任意一个变量所对应的函数值。不够形象、直观、具体,而且并不是所有的函数都能用解析式表示图象法形象直观地表示出函数的变化情况只能近似地求出自变量的值所对应的函数值而且有时误差较大列表法不需要计算就可以直接看出与自变量的值相对应的函数值它只
3、能表示自变量取较小的有限值的对应关系[例2].下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:第一次第二次第三次第四次第五次第六次王伟988791928895张城907688758680赵磊686573727582班平均分88.278.385.480.375.782.6请你对这三位同学在高一学年度的数学学习情况做一个分析.(书本P21)分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?注:本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点
4、;本例能否用解析法?为什么?[例3].画出函数y=
5、x
6、.拓展练习:任意画一个函数y=f(x)的图象,然后作出y=
7、f(x)
8、和y=f(
9、x
10、)的图象,并尝试简要说明三者(图象)之间的关系.注:(1)y=
11、f(x)
12、的图象可将y=f(x)的图象在x轴下方的部分以x轴为对称轴翻折到x轴上方,其余部分保持不变(2)y=f(
13、x
14、)的图象可将y=f(x),x≥0的部分图象作出,再利用偶函数的图象关于y轴的对称性,作出x<0的图象。[例4]某市郊空调公共汽车的票价按下列规则制定:(1)乘坐汽车5公里以内,票价2元;(2)5
15、公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算).已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.分析:本例是一个实际问题,有具体的实际意义.根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.解:设票价为y元,里程为x公里,同根据题意,如果某空调汽车运行路线中设20个汽车站(包括起点站和终点站),那么汽车行驶的里程约为19公里,所以自变量x的取值范围是{x∈N*
16、x≤19}.由空调汽车票价制
17、定的规定,可得到以下函数解析式:()根据这个函数解析式,可画出函数图象,如下图所示:注:本例具有实际背景,所以解题时应考虑其实际意义;本题可否用列表法表示函数,如果可以,应怎样列表?思考:本例题与课本P21例6有何区别?说明:象上面两例中的函数,称为分段函数.注意:分段函数的解析式能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.归纳小结,强化思想理解函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数,注意分段函数的表示方法及其图象的画法
18、.典型例题分析:[例]设,给出的4个图形,其中能表示集合到集合的函数关系的有()ABCD变式:设,,函数f(x)的定义域为,值域为,给出的4个图形,其中能表示集合到集合的函数关系的有()ABCD[例]已知函数(1)求;(2)若,求的值;(3)画出的图象,并求出的定义域与值域。作业:《成才》P38—41。映射教学目的:(1)了解映射的概念及表示方法,了解象、原象的概念;(2)结合简单的对应图示,了解一一映射的概念.教学重点:映射的概念.教学难点:映射的概念.教学过程:一、引入课题复习初中已经遇到过的对应:1.对于任何
19、一个实数a,数轴上都有唯一的点P和它对应;2.对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应;3.对于任意一个三角形,都有唯一确定的面积和它对应;4.某影院的某场电影的每一张电影票有唯一确定的座位与它对应;5.函数的概念.二、新课教学1.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合
此文档下载收益归作者所有