关注三角形的外

关注三角形的外

ID:37410122

大小:382.00 KB

页数:13页

时间:2019-05-12

关注三角形的外_第1页
关注三角形的外_第2页
关注三角形的外_第3页
关注三角形的外_第4页
关注三角形的外_第5页
资源描述:

《关注三角形的外》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、6.关注三角形的外角北师大版八年级下册(第六章)三角形的外角定义:三角形的一边与另一边的延长线所组成的角,叫做三角形的外角。特征:(1)顶点在三角形的一个顶点上.(2)一条边是三角形的一边.(3)另一条边是三角形某条边的延长线.DABC如图.∠1是△ABC的一个外角,∠1与图中的其它角有什么关系?证明:∵∠2+∠3+∠4=1800(三角形内角和定理)∠1+∠4=1800(1平角=180),∴∠1=∠2+∠3.(等量代换).∴∠1>∠2,∠1>∠3(和大于部分).ABCD1234能证明你的结论吗?三角形的一个外角等于和它不相邻的两个

2、内角的和.三角形的一个外角大于任何一个和它不相邻的内角.议一议三角形的一个外角等于和它不相邻的两个内角的和.三角形的一个外角大于任何一个和它不相邻的内角.ABCD1234在这里,我们通过三角形内角和定理直接推导出两个新定理.像这样,由一个公理或定理直接推出的定理,叫做这个公理或定理的推论.推论:推论可以当作定理使用.三角形内角和定理的推论:推论1:三角形的一个外角等于和它不相邻的两个内角的和.推论2:三角形的一个外角大于任何一个和它不相邻的内角.△ABC中:∠1=∠2+∠3;∠1>∠2,∠1>∠3.ABCD1234这个结论以后可以

3、直接运用.推论:例1已知:如图6-13,在△ABC中,AD平分外角∠EAC,∠B=∠C.求证:AD∥BC.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和),∴a∥b(内错角相等,两直线平行).∠B=∠C(已知),∴∠DAC=∠C(等量代换).ACDBE∵AD平分∠EAC(已知).∴∠C=∠EAC(等式性质).∴∠DAC=∠EAC(角平分线的定义).··例题是运用了定理“内错角相等,两直线平行”得到了证实.应用还有其它方法吗?方法一ACDBE··例1已知:如图6-13,在△ABC中,AD平分外角∠EAC,

4、∠B=∠C.求证:AD∥BC.∠B=∠C(已知),∴∠B=∠EAC(等式性质).∵AD平分∠EAC(已知).∴∠DAE=∠EAC(角平分线的定义).∴∠DAE=∠B(等量代换).∴a∥b(同位角相等,两直线平行).这里是运用了公理“同位角相等,两直线平行”得到了证实.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和),应用方法二ACDBE·例1已知:如图6-13,在△ABC中,AD平分外角∠EAC,∠B=∠C.求证:AD∥BC.∠DAC=∠C(已证),∵∠BAC+∠B+∠C=1800(三角形内角和定理).

5、∴∠BAC+∠B+∠DAC=1800(等量代换).∴a∥b(同旁内角互补,两直线平行).这里是运用了定理“同旁内角互补,两直线平行”得到了证实.证明:由证法1可得:·应用方法三例2已知:如图6-14,在△ABC中,∠1是它的一个外角,E为边AC上一点,延长BC到D,连接DE.求证:∠1>∠2.证明:∵∠1是△ABC的一个外角(已知),∴∠1>∠3(三角形的一个外角大于任何一个和它不相邻的内角).∵∠3是△CDE的一个外角(外角定义).∴∠3>∠2(三角形的一个外角大于任何一个和它不相邻的内角).∴∠1>∠2(不等式的性质).CAB

6、F1345ED2应用已知:如图所示,在△ABC中,外角∠DCA=100°,∠A=45°.求:∠B和∠ACB的大小.ABCD解:∵∠DCA是△ABC的一个外角(已知),∠DCA=100°(已知),∴∠B=100°-45°=55°.(三角形的一个外角等于和它不相邻的两个内角的和).又∵∠DCA+∠BCA=180°(平角意义).∴∠ACB=80°(等式的性质).∠A=45°(已知),随堂练习已知:如图所示.求证:(1)∠BDC>∠A;(2)∠BDC=∠A+∠B+∠C.证明(1):延长BD与AC相交于E∵∠BDC是△DCE的一个外角(外角

7、定义),∴∠BDC>∠CED(三角形的一个外角大于和它不相邻的任何一个外角).∴∠DEC>∠A(三角形的一个外角大于和它不相邻的任何一个外角).∴∠BDC>∠A(不等式的性质).∵∠DEC是△ABE的一个外角(外角定义),BCADE试一试已知:如图所示.求证:(1)∠BDC>∠A;(2)∠BDC=∠A+∠B+∠C.证明(2):∵∠BDC是△DCE的一个外角(外角定义),∴∠BDC=∠C+∠CED(三角形的一个外角等于和它不相邻的两个内角的和).∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个外角的和).∴∠BDC=∠A

8、+∠B+∠C(等式的性质).∵∠DEC是△ABE的一个外角(外角定义),BCADE试一试小结三角形内角和定理:三角形三个内角的和等于1800。推论1:三角形的一个外角等于和它不相邻的两个内角的和.推论2:三角形的一个外角大于任何一个和它不相邻的内角

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。